DANIEL GENEST - PUBLICATIONS

Insight into the intrinsic flexibility of the SL1 stem-loop from genomic RNA of HIV-1 as probed by molecular dynamics simulation.
Mazier, S; Genest, D Biopolymers (2008) 89 (3) 187-196

Ligand-escape pathways from the Ligand Binding Domain of PPARγ receptor as probed by molecular dynamics simulations
Genest, D; Garnier, N; Arrault, A; Marot, C; Morin-Allory, L; Genest, M Eur. Biophys. J. (2008) 37 (4) 369-379

Molecular dynamics simulation for probing the flexibility of the 35 nucleotide SL1 sequence kissing complex from HIV-1Lai genomic RNA

Atypical recognition of particular DNA sequences by the archaeal chromosomal MC1 protein
De Vuyst, G; Aci, S; Genest, D; Culard, F Biochemistry (2005) 44 (30) 10369-10377

Conformational pathway for the kissing complex - Extended dimer transition of the SL1 stem-loop from genomic HIV-1 RNA as monitored by targeted molecular dynamics techniques
Aci, S; Mazier, S; Genest, D J. Mol. Biol. (2005) 351 (3) 520-530

Base pairing at the stem-loop junction in the SL1 kissing complex of HIV-1 RNA: A thermodynamic study probed by molecular dynamics simulation

On the stability of different experimental dimeric structures of the SL1 sequence from the genomic RNA of HIV-1 in solution: A molecular dynamics simulation and electrophoresis study
Aci, S; Gangneux, L; Paoletti, J; Genest, D Biopolymers (2004) 74 (3) 177-188
Modeling the dynamics of the solvated SL1 domain of HIV-1 genomic RNA
La Penna, G; Genest, D; Perico, A Biopolymers (2003) 69 (1) 1-14

HIV-1(Lai) genomic RNA: combined used of NMR and molecular dynamics simulation for studying the structure and internal dynamics of a mutated SL1 hairpin
Kieken, F; Arnoult, E; Barbault, F; Paquet, F; Huynh-Dinh, T; Paoletti, J; Genest, D; Lancelot, G Eur. Biophys. J. Biophy. (2002) 31 (7) 521-531

Modeling the dynamics of a mutated stem-loop in the SL1 domain of HIV-1(Lai) genomic RNA by H-1-N0ESY spectra
Fausti, S; La Penna, G; Paoletti, J; Genest, D; Lancelot, G; Perico, A J. Biomol. NMR (2001) 20 (4) 333-349

Dynamics of a double stranded DNA oligomer: Mode-coupling diffusion approach and reduced rigid fragment models
La Penna, G; Perico, A; Genest, D J. Biomol. Struct. Dyn. (2000) 17 (4) 673-685

Correlated motions analysis from molecular dynamics trajectories: Statistical accuracy on the determination of canonical correlation coefficients

From atomic to mesoscopic descriptions of the internal dynamics of DNA
Bruant, N; Flatters, D; Lavery, R; Genest, D Biophys. J. (1999) 77 (5) 2366-2376

Motion of groups of atoms in DNA studied by molecular dynamics simulation

Time resolved fluorescence properties of phenylalanine in different environments. Comparison with molecular dynamics simulation
Duneau, JP; Garnier, N; Cremel, G; Nullans, G; Hubert, P; Genest, D; Vincent, M; Gallay, J; Genest, M Biophys. Chem (1998) 73 (1-2) 109-119

X-ray diffuse scattering and rigid-body motion in crystalline lysozyme probed by molecular dynamics simulation
Hery, S; Genest, D; Smith, JC J. Mol. Biol. (1998) 279 (1) 303-319

Dynamics of proteins: Correlation and diffusion
Hery, S; Genest, D; Smith, JC Physica B (1997) 234;175-182

Fluctuation and correlation in crystalline lysozyme
Internal dynamics of d(CGCAAATTTGCG)(2) a comparison of NMR relaxation measurements with a molecular dynamics simulation

Molecular modeling of c-erbB2 receptor dimerization: Coiled-coil structure of wild and oncogenic transmembrane domains - Stabilization by interhelical hydrogen bonds in the oncogenic form
Garnier, N; Genest, D; Duneau, JP; Genest, M Biopolymers (1997) 42 (2) 157-168

Search for rigid sub domains in DNA from molecular dynamics simulations

Correlated motions and propagation of the effect of a local conformational change in the transmembrane helix of the c-erbB2 encoded protein and in its V659E mutant, studied by molecular dynamics simulations
Garnier, N; Genest, D; Genest, M Biophys. Chem. (1996) 58 (3) 225-237

Detailed description of an alpha helix->pi bulge transition detected by molecular dynamics simulations of the p185(c-erbB2) V659G transmembrane domain

How long does DNA keep the memory of its conformation? A time-dependent canonical correlation analysis of molecular dynamics simulation
Genest, D Biopolymers (1996) 38 (3) 389-399

Rigid-body motions of sub-units in DNA - a correlation-analysis of a 200-ps molecular-dynamics simulation

Rotational motions of bases in DNA

Canonical-analysis of correlated atomic motions in DNA from molecular-dynamics simulation
Briki, F; Genest, D Biophys; Chem. (1994) 52 (1) 35-43

Influence of a mutation in the transmembrane domain of the p185(c-erbb2) oncogene-encoded protein studied by molecular-dynamics simulations
Motions and correlations of the transmembrane domain of a protein studied by molecular dynamics simulation
Garnier, N; Genest, D; Genest, M in Non linear excitations in biomolecules - Peyrard, M (Ed. Les Editions de physique Springer) (1994) 241-246

Molecular-dynamics study of the base-pair opening process in the self-complementary octanucleotide d(ctgatcag)

A new constraint potential for the structure refinement of biomolecules in solution using experimental nuclear overhauser effect intensity
Stawarz, B; Genest, M; Genest, D Biopolymers (1992) 32 (6) 633-642

Evidence for the stochastic nature of base pair opening in DNA - a brownian dynamics simulation
Briki, F; Ramstein, J; Lavery, R; Genest, D J. Am. Chem. Soc. (1991) 113 (7) 2490-2493

Modeling the b-DNA base pair opening reaction
Briki, F; Lavery, R; Genest, D; Ramstein, J J. Chim. Phys. PCB (1991) 88 (11-12) 2567-2572

Molecular modeling using noe intensity constraints
Genest, M; Stawarz, B; Genest, D J. Chim. Phys. PCB (1991) 88 (11-12) 2573-2580

A 2D NMR-study of the internal flexibility of the antifungal peptide stendomycin

Method for evaluating the reliability of distances and rotational correlation times deduced from 2D h-1-NMR noesy experiments

A monte-carlo simulation study of the influence of internal motions on the molecular-conformation deduced from two-dimensional NMR experiments
Genest, D Biopolymers (1989) 28 (11) 1903-1911

Correction

Micellization and interactions with phospholipid-vesicles of the lipopeptide iturin-a, as monitored by time-resolved fluorescence of a d-tyrosyl residue
Harnois, I; Genest, D; Brochon, JC; Ptak, M Biopolymers (1988) 27 (9) 1403-1413
2-dimensional h-1-NMR study of d(br5c-g)3 in the z-form - self association and flexibility of the left-handed double helix

Fluorescence decay of ethidium-bromide in the presence of the z-conformation of poly(dg-dc) and of poly(dg-dc) modified by chlorodiethylene triamine platinum(ii) chloride
Genest, D; Malfoy, B Biopolymers (1986) 25 (3) 507-518

Thermal-stability of the z-conformation of the hexanucleoside pentaphosphate d(br5cbr5cbr5c) - evidence for a conformational transition before melting
Hartmann, B; Genest, D; Thuong, NT; Ptak, M; Leng, M Biochimie (1986) 68 (5) 739-744

Investigation of DNA dynamics and drug-DNA interactions by steady state fluorescence anisotropy.
Genest, D; Mirau, P; Kearns, DR Nucleic Acids Res. (1985) 13 2603-2615

A method for deciding whether 2 experimental fluorescence anisotropy decay curves are significantly different

Thermal-stability of the z-conformation of the tetranucleoside triphosphate (m5dc-dg)2
Genest, D; Hartmann, B; Thuong, NT; Ptak, M; Leng, M Biochem. Bioph. Res. Co. (1984) 125 (2) 803-811

Fluorescence Anisotropy Decay Of Ethidium-Bromide Bound To Nucleosomal Core Particles
Genest, D; Wahl, P; Erard, M; Champagne, M; Daune, M Biochimie (1982) 64 (6) 419-427

An interpretation of the binding of ethidium-bromide to the core nucleosome, based on monte-carlo calculations
Genest, D; Wahl, P Biochimie (1981) 63 (6) 561-564

Fluorescence anisotropy decay of ethidium bound to chromatin
Genest, D; Sabeur, G; Wahl, P; Auchet, Jc Biophys. Chem. (1981) 13 (1) 77-87

Location of the ethidium binding-sites of high-affinity in chromatin
Genest, D; Sabeur, G; Wahl, P; Aubelsadron, G Biophys. Chem. (1981) 13 (1) 89-96

Interaction between daunorubicin and chromatin from ehrlich ascites tumor-cells
Fluorescence anisotropy decay due to rotational brownian-motion of ethidium intercalated in double strand DNA
Genest, D; Wahl, P Biochim. Biophys. Acta (1978) 521 (2) 502-509

Further-studies on interaction between polynucleotides and antibodies to poly(inosinic acid) poly(cytidylic acid)
Leng, M; Guigues, M; Genest, D Biochemistry (1978) 17 (16) 3215-3220

Pulse Fluorimetry Of 1,6-Diphenyl-1,3,5-Hexatriene Incorporated In Membranes Of Mouse Leukemic-L-1210 Cells
Sene, C; Genest, D; Obrenovitch, A; Wahl, P; Monsigny, M Febs Lett. (1978) 88 (2) 181-186

Pulse fluorimetry study in polarized-light of DNA-ethidium bromide complexes
Genest, D; Wahl, P Biophys. Chem. (1978) 7 (4) 317-323

Energy migration in poly(ra-ru)-ethidium complex - determination of unwinding angle of poly-ribonucleic helix
Wahl, P; Genest, D; Tichadou, Jl Biophys. Chem. (1977) 6 (3) 311-319

Use of fluorescence anisotropy decay of poly d(a-t) ethidium-bromide complex to estimate unwinding angle of double helix
Tichadou, JL; Genest, D; Wahl, P; Aubelsadron, G Biophys. Chem. (1975) 3 (2) 142-146

The fluorescence anisotropy decay due to energy transfers occuring in the ethidium bromide-DNA complex. Determination of the deformation angle of the DNA helix.
Genest, D; Wahl, P; Auchet, J C Biophys. Chem. (1974) 1 (4) 266-78

A study of methylated DNA-proflavine complexes
Ramstein, J; Genest, D; Leng, M in The purines. Theory and experiments. (Ed. Bergmann, ED; Pullman, B) (1972) IV 593-598

Energy transfer study in the DNA-ethidium bromide complex by means of anisotropy decay-ll
Genest, D; Wahl, P in Dynamical aspects of conformation changes in biological macromolecules (Ed. Ch. Sadron ed.; D. Reidel Publishing Company) (1972) 367-379

Study on energy-transfer in DNA-ethidium bromide complex by drop in fluorescence anisotropy
Genest, D; Wahl, P Biochim. Biophys. Acta (1972) 259 (2) 175-&

- 6 -