Partenaires

CNRS


Rechercher


Accueil > Annuaire

Villette Sandrine


email

tél : 02.38.25.55.38 - fax : 02.38.25.55.83

CV

Publications

2016   Références trouvées : 1

Boyer M., Carrion A. J. F., Ory S., Becerro A. I., Villette S., Eliseeva S. V., Petoud S., Aballea P., Matzen G. and Allix M.  (2016)

Transparent polycrystalline SrREGa3O7 melilite ceramics : potential phosphors for tuneable solid state lighting

Journal of Materials Chemistry (2016) 4 (15) 3238-3247 - doi : 10.1039/C6TC00633G
Full and congruent crystallization from glass is applied to the SrREGa3O7 melilite family (RE = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y). This innovative process enables the synthesis of polycrystalline ceramics exhibiting high transparency both in the visible and near infrared regions, despite tetragonal crystal structures and micrometer scale grain sizes. Moreover, glass crystallization provides an original route to synthesize new crystalline phases which are not accessible via a classic solid state reaction, as demonstrated for SrYbGa3O7 and SrTmGa3O7. To illustrate the potential optical applications of such materials, SrGdGa3O7 transparent polycrystalline ceramics are doped with Dy3+ or Tb3+/Eu3+ in order to generate white light emission under UV excitation. It is foreseen that such transparent melilite ceramic phosphors, prepared via a cost-effective process, can be successfully used in solid state lighting devices of considerable technological interest.

Full and congruent crystallization from glass is applied to the SrREGa3O7 melilite family (RE = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y). This innovative process enables the synthesis of polycrystalline ceramics exhibiting high transparency both in the visible and near infrared regions, despite tetragonal crystal structures and micrometer scale grain sizes. Moreover, glass crystallization provides an original route to synthesize new crystalline phases which are not accessible via a classic solid state reaction, as demonstrated for SrYbGa3O7 and SrTmGa3O7. To illustrate the potential optical applications of such materials, SrGdGa3O7 transparent polycrystalline ceramics are doped with Dy3+ or Tb3+/Eu3+ in order to generate white light emission under UV excitation. It is foreseen that such transparent melilite ceramic phosphors, prepared via a cost-effective process, can be successfully used in solid state lighting devices of considerable technological interest.


2013   Références trouvées : 4

Jamme, F., Kascakova, S., Villette, S., Allouche, F., Pallu, S., Rouam, V., Réfrégiers, M.  (2013)

Deep UV autofluorescence microscopy for cell biology and tissue histology

Biology of the Cell (2013) 105 (7) 277-288 - doi : 10.1111/boc.201200075
Background Information Autofluorescence spectroscopy is a powerful tool for molecular histology and for following metabolic processes in biological samples as it does not require labelling. However, at the microscopic scale, it is mostly limited to visible and near infrared excitation of the samples. Several interesting and naturally occurring fluorophores can be excited in the UV and deep UV (DUV), but cannot be monitored in cellulo nor in vivo due to a lack of available microscopic instruments working in this wavelength range. To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. Results To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. Conclusions In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology.

Background Information Autofluorescence spectroscopy is a powerful tool for molecular histology and for following metabolic processes in biological samples as it does not require labelling. However, at the microscopic scale, it is mostly limited to visible and near infrared excitation of the samples. Several interesting and naturally occurring fluorophores can be excited in the UV and deep UV (DUV), but cannot be monitored in cellulo nor in vivo due to a lack of available microscopic instruments working in this wavelength range. To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. Results To fulfil this need, we have developed a synchrotron-coupled DUV microspectrofluorimeter which is operational since 2010. An extended selection of endogenous autofluorescent probes that can be excited in DUV, including their spectral characteristics, is presented. The distribution of the probes in various biological samples, including cultured cells, soft tissues, bone sections and maize stems, is shown to illustrate the possibilities offered by this system. In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology. Conclusions In this work we demonstrate that DUV autofluorescence is a powerful tool for tissue histology and cell biology.

Foucault-Collet, A. ; Gogick, K. A. ; White, K. A. ; Villette, S. ; Pallier, A. ; Collet, G. ; Kieda, C. ; Li, T. ; Geib, S. J. ; Rosi, N. L. ; Petoud, S.  (2013)

Lanthanide near infrared imaging in living cells with Yb3+ nano metal organic frameworks

Proc Natl Acad Sci U S A (2013) 110, 17199-17204 - doi : 10.1073/pnas.1305910110
We have created unique near-infrared (NIR)–emitting nanoscale metal-organic frameworks (nano-MOFs) incorporating a high density of Yb3+ lanthanide cations and sensitizers derived from phenylene. We establish here that these nano-MOFs can be incorporated into living cells for NIR imaging. Specifically, we introduce bulk and nano-Yb-phenylenevinylenedicarboxylate-3 (nano-Yb-PVDC-3), a unique MOF based on a PVDC sensitizer-ligand and Yb3+ NIR-emitting lanthanide cations. This material has been structurally characterized, its stability in various media has been assessed, and its luminescent properties have been studied. We demonstrate that it is stable in certain specific biological media, does not photobleach, and has an IC50 of 100 μg/mL, which is sufficient to allow live cell imaging. Confocal microscopy and inductively coupled plasma measurements reveal that nano-Yb-PVDC-3 can be internalized by cells with a cytoplasmic localization. Despite its relatively low quantum yield, nano-Yb-PVDC-3 emits a sufficient number of photons per unit volume to serve as a NIR-emitting reporter for imaging living HeLa and NIH 3T3 cells. NIR microscopy allows for highly efficient discrimination between the nano-MOF emission signal and the cellular autofluorescence arising from biological material. This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation.

We have created unique near-infrared (NIR)–emitting nanoscale metal-organic frameworks (nano-MOFs) incorporating a high density of Yb3+ lanthanide cations and sensitizers derived from phenylene. We establish here that these nano-MOFs can be incorporated into living cells for NIR imaging. Specifically, we introduce bulk and nano-Yb-phenylenevinylenedicarboxylate-3 (nano-Yb-PVDC-3), a unique MOF based on a PVDC sensitizer-ligand and Yb3+ NIR-emitting lanthanide cations. This material has been structurally characterized, its stability in various media has been assessed, and its luminescent properties have been studied. We demonstrate that it is stable in certain specific biological media, does not photobleach, and has an IC50 of 100 μg/mL, which is sufficient to allow live cell imaging. Confocal microscopy and inductively coupled plasma measurements reveal that nano-Yb-PVDC-3 can be internalized by cells with a cytoplasmic localization. Despite its relatively low quantum yield, nano-Yb-PVDC-3 emits a sufficient number of photons per unit volume to serve as a NIR-emitting reporter for imaging living HeLa and NIH 3T3 cells. NIR microscopy allows for highly efficient discrimination between the nano-MOF emission signal and the cellular autofluorescence arising from biological material. This work represents a demonstration of the possibility of using NIR lanthanide emission for biological imaging applications in living cells with single-photon excitation.

Mendonça A.C., Martins A.F., Melchior A., Marques S.M., Chaves S., Villette S., Petoud S., Zanonato P.L., Tolazzi M., Bonnet C.S., Tóth E., Di Bernardo P., Geraldes C.F. and Santos M.A.  (2013)

New tris-3,4-HOPO lanthanide complexes as potential imaging probes : complex stability and magnetic properties

Dalton Transactions 42 (17) 6046-6057
There is a growing interest in the development of new medical diagnostic tools with higher sensibility and less damage for the patient body, namely on imaging reporters for the management of diseases and optimization of treatment strategies. This article examines the properties of a new class of lanthanide complexes with a tripodal tris-3-hydroxy-4-pyridinone (tris-3,4-HOPO) ligand - NTP(PrHP)3. Among the studies herein performed, major relevance is given to the thermodynamic stability of the complexes with a series of Ln(3+) ions (Ln = La, Pr, Gd, Er, Lu) and to the magnetic relaxation properties of the Gd(3+) complex. This hexadentate ligand enables the formation of (1 : 1) Ln(3+) complexes with high thermodynamic stability following the usual trend, while the Gd-chelates show improved relaxivity (higher hydration number), as compared with the commercially available Gd-based contrast agents (CAs) ; transmetallation of the Gd(3+)-L complex with Zn(2+) proved to be thermodynamically and kinetically disfavored. Therefore, NTP(PrHP)3 emerges as part of a recently proposed new generation of CAs with prospective imaging sensibility gains.

There is a growing interest in the development of new medical diagnostic tools with higher sensibility and less damage for the patient body, namely on imaging reporters for the management of diseases and optimization of treatment strategies. This article examines the properties of a new class of lanthanide complexes with a tripodal tris-3-hydroxy-4-pyridinone (tris-3,4-HOPO) ligand - NTP(PrHP)3. Among the studies herein performed, major relevance is given to the thermodynamic stability of the complexes with a series of Ln(3+) ions (Ln = La, Pr, Gd, Er, Lu) and to the magnetic relaxation properties of the Gd(3+) complex. This hexadentate ligand enables the formation of (1 : 1) Ln(3+) complexes with high thermodynamic stability following the usual trend, while the Gd-chelates show improved relaxivity (higher hydration number), as compared with the commercially available Gd-based contrast agents (CAs) ; transmetallation of the Gd(3+)-L complex with Zn(2+) proved to be thermodynamically and kinetically disfavored. Therefore, NTP(PrHP)3 emerges as part of a recently proposed new generation of CAs with prospective imaging sensibility gains.

Lacerda, S., Bonnet, C.S., Pallier, A., Villette, S., Foucher, F., Westall, F., Buron, F., Suzenet, F., Pichon, C., Petoud, S. and Tóth, E.  (2013)

Lanthanide-Based, Near-Infrared Luminescent and Magnetic Lipoparticles : Monitoring Particle Integrity

Small (2013) 9 (16) 2662-2666 - doi : 10.1002/smll.201201923
Near-infrared emitting, magnetic particles for combined optical and MR detection based on liposomes or artificial lipoproteins are presented. They provide a novel strategy for the luminescence sensitization of lanthanide cations (Yb3+, Nd3+) without covalent bonds between the chromophore and the lanthanide, and provide an unambiguous tool for monitoring the integrity of the liponanoparticles, via emission in the NIR region.

Near-infrared emitting, magnetic particles for combined optical and MR detection based on liposomes or artificial lipoproteins are presented. They provide a novel strategy for the luminescence sensitization of lanthanide cations (Yb3+, Nd3+) without covalent bonds between the chromophore and the lanthanide, and provide an unambiguous tool for monitoring the integrity of the liponanoparticles, via emission in the NIR region.


2012   Références trouvées : 4

Goffinont, S., Villette, S. and Spotheim-Maurizot, M.  (2012)

Alanine Screening Mutagenesis Establishes the Critical Inactivating Damage of Irradiated E. coli Lactose Repressor.

Radiation Research 177 (6) 738-742
The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor.

The function of the E. coli lactose operon requires the binding of lactose repressor to operator DNA. We have previously shown that γ rradiation destabilizes the repressor-operator complex because the repressor loses its DNA-binding ability. It was suggested that the observed oxidation of the four tyrosines (Y7, Y12, Y17, Y47) and the concomitant structural changes of the irradiated DNA-binding domains (headpieces) could be responsible for the inactivation. To pinpoint the tyrosine whose oxidation has the strongest effect, four headpieces containing the product of tyrosine oxidation, 3,4-dihydroxyphenylalanine (DOPA), were simulated by molecular dynamics. We have observed that replacing Y47 by DOPA triggers the largest change of structure and stability of the headpiece and have concluded that Y47 oxidation is the greatest contributor to the decrease of repressor binding to DNA. To experimentally verify this conclusion, we applied the alanine screening mutagenesis approach. Tetrameric mutated repressors bearing an alanine instead of each one of the tyrosines were prepared and their binding to operator DNA was checked. Their binding ability is quite similar to that of the wild-type repressor, except for the Y47A mutant whose binding is strongly reduced. Circular dichroism determinations revealed small reductions of the proportion of α helices and of the melting temperature for Y7A, Y12A and Y17A headpieces, but much larger ones were revealed for Y47A headpiece. These results established the critical role of Y47 oxidation in modifying the structure and stability of the headpiece, and in reduction of the binding ability of the whole lactose repressor.

Godin, F., Villette, S., Vallée, B., Doudeau, M., Morisset-Lopez, S., Ardourel, M., Hevor, T., Pichon, C. and Bénédetti, B.  (2012)

A fraction of neurofibromin interacts with PML bodies in the nucleus of the CCF astrocytoma cell line

Biochemical and Biophysical Research Communications 418 (4) 689-694
Neurofibromatosis type 1 is a common genetic disease that causes nervous system tumors, and cognitive deficits. It is due to mutations within the NF1 gene, which encodes the Nf1 protein. Nf1 has been shown to be involved in the regulation of Ras, cAMP and actin cytoskeleton dynamics. In this study, using immunofluorescence experiments, we have shown a partial nuclear localization of Nf1 in the astrocytoma cell line : CCF and we have demonstrated that Nf1 partially colocalizes with PML (promyelocytic leukemia) nuclear bodies. A direct interaction between Nf1 and the multiprotein complex has further been demonstrated using ‘‘in situ’’ proximity ligation assay (PLA).

Neurofibromatosis type 1 is a common genetic disease that causes nervous system tumors, and cognitive deficits. It is due to mutations within the NF1 gene, which encodes the Nf1 protein. Nf1 has been shown to be involved in the regulation of Ras, cAMP and actin cytoskeleton dynamics. In this study, using immunofluorescence experiments, we have shown a partial nuclear localization of Nf1 in the astrocytoma cell line : CCF and we have demonstrated that Nf1 partially colocalizes with PML (promyelocytic leukemia) nuclear bodies. A direct interaction between Nf1 and the multiprotein complex has further been demonstrated using ‘‘in situ’’ proximity ligation assay (PLA).

Caillé, F, Bonnet, CS, Buron, F, Villette, S, Helm, L, Petoud, S, Suzenet, F. & Tóth E.  (2012)

Isoquinoline-Based Lanthanide Complexes : Bright NIR Optical Probes and Efficient MRI Agents

Inorganic Chemistry 51 (4) 2522-2532
In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the optimization of the optical properties of the luminescent lanthanide complexes in comparison to the pyridinic analogues and provides significant shifts of the excitation energies toward lower values which therefore become more adapted for biological applications. L2 and L3 bear two methoxy substituents on the aromatic core in ortho and para positions, respectively, that further modulate their electronic structure. The Nd(3+) and Yb(3+) complexes of the ligand L3, which incorporates the p-dimethoxyisoquinoline moiety, can be excited up to 420 nm. This wavelength is shifted over 100 nm toward lower energy in comparison to the pyridine-based analogue. The luminescence quantum yields of the Nd(3+) (0.013-0.016%) and Yb(3+) chelates (0.028-0.040%) are in the range of the best nonhydrated complexes, despite the presence of two inner sphere water molecules. More importantly, the 980 nm NIR emission band of YbL3 was detected with a good sensitivity in a proof of concept microscopy experiment at a concentration of 10 μM in fetal bovine serum. Our results demonstrate that even bishydrated NIR lanthanide complexes can emit a sufficient number of photons to ensure sensitive detection in practical applications. In particular, these ligands containing an aromatic core with coordinating pyridine nitrogen can be easily modified to tune the optical properties of the NIR luminescent lanthanide complexes while retaining good complex stability and MRI characteristics for the Gd(3+) analogues. They constitute a highly versatile platform for the development of bimodal MR and optical imaging probes based on a simple mixture of Gd(3+) and Yb(3+)/Nd(3+) complexes using an identical chelator. Given the presence of two inner sphere water molecules, important for MRI applications of the corresponding Gd(3+) analogues, this result is particularly exciting and opens wide perspectives not only for NIR imaging based on Ln(3+) ions but also for the design of combined NIR optical and MRI probes.

In the objective of developing ligands that simultaneously satisfy the requirements for MRI contrast agents and near-infrared emitting optical probes that are suitable for imaging, three isoquinoline-based polyaminocarboxylate ligands, L1, L2 and L3, have been synthesized and the corresponding Gd(3+), Nd(3+) and Yb(3+) complexes investigated. The specific challenge of the present work was to create NIR emitting agents which (i) have excitation wavelengths compatible with biological applications and (ii) are able to emit a sufficient number of photons to ensure sensitive NIR detection for microscopic imaging. Here we report the first observation of a NIR signal arising from a Ln(3+) complex in aqueous solution in a microscopy setup. The lanthanide complexes have high thermodynamic stability (log K(LnL) =17.7-18.7) and good selectivity for lanthanide ions versus the endogenous cations Zn(2+), Cu(2+), and Ca(2+) thus preventing transmetalation. A variable temperature and pressure (17)O NMR study combined with nuclear magnetic relaxation dispersion measurements yielded the microscopic parameters characterizing water exchange and rotation. Bishydration of the lanthanide cation in the complexes, an important advantage to obtain high relaxivity for the Gd(3+) chelates, has been demonstrated by (17)O chemical shifts for the Gd(3+) complexes and by luminescence lifetime measurements for the Yb(3+) analogues. The water exchange on the three Gd(3+) complexes is considerably faster (k(ex)(298) = (13.9-15.4) × 10(6) s(-1)) than on commercial Gd(3+)-based contrast agents and proceeds via a dissociative mechanism, as evidenced by the large positive activation volumes for GdL1 and GdL2 (+10.3 ± 0.9 and +10.6 ± 0.9 cm(3) mol(-1), respectively). The relaxivity of GdL1 is doubled at 40 MHz and 298 K in fetal bovine serum (r(1) = 16.1 vs 8.5 mM(-1) s(-1) in HEPES buffer), due to hydrophobic interactions between the chelate and serum proteins. The isoquinoline core allows for the optimization of the optical properties of the luminescent lanthanide complexes in comparison to the pyridinic analogues and provides significant shifts of the excitation energies toward lower values which therefore become more adapted for biological applications. L2 and L3 bear two methoxy substituents on the aromatic core in ortho and para positions, respectively, that further modulate their electronic structure. The Nd(3+) and Yb(3+) complexes of the ligand L3, which incorporates the p-dimethoxyisoquinoline moiety, can be excited up to 420 nm. This wavelength is shifted over 100 nm toward lower energy in comparison to the pyridine-based analogue. The luminescence quantum yields of the Nd(3+) (0.013-0.016%) and Yb(3+) chelates (0.028-0.040%) are in the range of the best nonhydrated complexes, despite the presence of two inner sphere water molecules. More importantly, the 980 nm NIR emission band of YbL3 was detected with a good sensitivity in a proof of concept microscopy experiment at a concentration of 10 μM in fetal bovine serum. Our results demonstrate that even bishydrated NIR lanthanide complexes can emit a sufficient number of photons to ensure sensitive detection in practical applications. In particular, these ligands containing an aromatic core with coordinating pyridine nitrogen can be easily modified to tune the optical properties of the NIR luminescent lanthanide complexes while retaining good complex stability and MRI characteristics for the Gd(3+) analogues. They constitute a highly versatile platform for the development of bimodal MR and optical imaging probes based on a simple mixture of Gd(3+) and Yb(3+)/Nd(3+) complexes using an identical chelator. Given the presence of two inner sphere water molecules, important for MRI applications of the corresponding Gd(3+) analogues, this result is particularly exciting and opens wide perspectives not only for NIR imaging based on Ln(3+) ions but also for the design of combined NIR optical and MRI probes.

Bonnet, CS, Buron, F, Caillé, F, Shade, CM, Drahoš, B, Pellegatti, L, Zhang, J, Villette, S, Helm, L, Pichon, C, Suzenet, F, Petoud, S. & Tóth E.  (2012)

Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities

Chemistry - a european journal 18 (5) 1419-1431
A series of novel triazole derivative pyridine-based polyamino-polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd(3+) and near-infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln(3+) complexes, as assessed by pH potentiometric measurements, are in the range log K(LnL) =17-19, with a high selectivity for lanthanides over Ca(2+) , Cu(2+) , and Zn(2+) . The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd(3+) chelates. The water exchange of the Gd(3+) complexes (k(ex) (298) =7.7-9.3×10(6) s(-1) ) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV(≠) =7.2-8.8 cm(3) mol(-1) ). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl-triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet-state energies associated with good quantum yields for both Nd(3+) and Yb(3+) complexes. Cellular and in vivo toxicity studies in mice evidenced the non-toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd(3+) and the luminescent lanthanide complexes, respectively.

A series of novel triazole derivative pyridine-based polyamino-polycarboxylate ligands has been synthesized for lanthanide complexation. This versatile platform of chelating agents combines advantageous properties for both magnetic resonance (MR) and optical imaging applications of the corresponding Gd(3+) and near-infrared luminescent lanthanide complexes. The thermodynamic stability constants of the Ln(3+) complexes, as assessed by pH potentiometric measurements, are in the range log K(LnL) =17-19, with a high selectivity for lanthanides over Ca(2+) , Cu(2+) , and Zn(2+) . The complexes are bishydrated, an important advantage to obtain high relaxivities for the Gd(3+) chelates. The water exchange of the Gd(3+) complexes (k(ex) (298) =7.7-9.3×10(6)  s(-1) ) is faster than that of clinically used magnetic resonance imaging (MRI) contrast agents and proceeds through a dissociatively activated mechanism, as evidenced by the positive activation volumes (ΔV(≠) =7.2-8.8 cm(3) mol(-1) ). The new triazole ligands allow a considerable shift towards lower excitation energies of the luminescent lanthanide complexes as compared to the parent pyridinic complex, which is a significant advantage in the perspective of biological applications. In addition, they provide increased epsilon values resulting in a larger number of emitted photons and better detection sensitivity. The most conjugated system PheTPy, bearing a phenyl-triazole pendant on the pyridine ring, is particularly promising as it displays the lowest excitation and triplet-state energies associated with good quantum yields for both Nd(3+) and Yb(3+) complexes. Cellular and in vivo toxicity studies in mice evidenced the non-toxicity and the safe use of such bishydrated complexes in animal experiments. Overall, these pyridinic ligands constitute a highly versatile platform for the simultaneous optimization of both MRI and optical properties of the Gd(3+) and the luminescent lanthanide complexes, respectively.


2011   Références trouvées : 2

Fu, L., Villette, S., Petoud, S., Fernandez-Alonso, F. & Saboungi, M. L.  (2011)

H/D Isotope Effects in Protein Thermal Denaturation : The Case of Bovine Serum Albumin

Journal of Physical Chemistry B - 115 (8) 1881-1888

Batard, E. Jamme, F. Villette, S. Jacqueline, C. de la Cochetiere, M. F. Caillon, J. & Refregiers, M.  (2011)

Diffusion of Ofloxacin in the Endocarditis Vegetation Assessed with Synchrotron Radiation UV Fluorescence Microspectrocopy

PLOS One - 6 (4) e19440


2010   Références trouvées : 3

Jamme, F., Villette, S., Giuliani, A., Rouam,V., Wien, F., Lagarde, B. & Réfrégiers, M.  (2010)

Synchrotron UV Fluorescence Microscopy Uncovers New Probes in Cells and Tissues

Microscopy and Microanalysis, 16, pp 507-514 doi:10.1017/S1431927610093852

Thiagarajan, V. Villette, S., Espagne, A., Eker, A.P.M., Brettel, K. & Byrdin, M.  (2010)

DNA Repair by Photolyase : A novel substrate with low background absorption around 265 nm for transient absorption studies in the UV.

Biochemistry 49, 297-303.

Bonnet, C.S., Pellegatti, L., Buron, F., Shade, C.M., Villette, S., Kubicek, V., Guillaumet, G., Suzenet, F., Petoud, S. & Toth, E.  (2010)

Hydrophobic chromophore cargo in micellar structures : a different strategy to sensitize lanthanide cations.

Chem. Commun. 46, 124-126.


2009   Références trouvées : 2

Westall, F., Lemelle, L., Simionovici, A., Salome, M., Marrocchi, Y., Foucher, F., Cavalazzi, B., Meibom, A., Robert, F., Mostafaoui, S., Jauss, A., Toporski, J., Laclean, L., Southam, G., Wirick, S., Villette, S., Jamme, F. & Dumas, P.  (2009)

In situ analysis of the molecular organic and elemental composition of a 3.33 Ga microbial mat from Barberton.

Geochim. Cosmochim. Acta 73, A1430.

Byrdin, M., Viruthachalam, T., Villette, S., Espagne, A. & Brettel, K.  (2009)

Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption.

Rev. Sci. Inst. 80, 043102.


2008   Références trouvées : 4

Spotheim-Maurizot , M., Mazier, S., Villette , S., Goffinont, S., Genest, D., Cadene, M. & Davidkova, M.   (2008)

Radiation-induced oxidation of proteins in DNA-protein complexes.

Radioprotection 43, 131-132.

Pellegatti, L., Zhang, J., Drahos, B., Villette, S., Suzenet, F., Guillaumet, G., Petoud, S. & Toth, E.  (2008)

Pyridine-based lanthanide complexes : towards bimodal agents operating as near infrared luminescent and MRI reporters.

Chem. Commun. 48, 6591-6593.

Mazier, S., Villette, S., Goffinont, S., Renouard, S., Maurizot, J.C., Genest, D. & Spotheim-Maurizot, M.   (2008)

Radiation Damage to a DNA-Binding Protein. Combined Circular Dichroism and Molecular Dynamics Simulation Analysis.

Radiat. Res. 170, 604-612.

Byrdin, M., Villette, S., Espagne, A., Eker, A.P.M. & Brettel, K.  (2008)

Polarized transient absorption to resolve electron transfer between tryptophans in DNA photolyase.

J. Phys. Chem. B 112, 6866-6871.


2007   Références trouvées : 1

Byrdin, M ; Villette, S ; Eker, APM ; Brettel, K  (2007)

Observation of an intermediate tryptophanyl radical in W306F mutant DNA photolyase from Escherichia coli supports electron hopping along the triple tryptophan chain

Biochemistry 46 (35) 10072-10077
DNA photolyases repair UV-induced cyclobutane pyrimidine dimers in DNA by photoinduced electron transfer. The redox-active cofactor is FAD in its doubly reduced state FADH(-). Typically, during enzyme purification, the flavin is oxidized to its singly reduced semiquinone state FADH degrees. The catalytically potent state FADH(-) can be reestablished by so-called photoactivation. Upon photoexcitation, the FADH degrees is reduced by an intrinsic amino acid, the tryptophan W306 in Escherichia coli photolyase, which is 15 A distant. Initially, it has been believed that the electron passes directly from W306 to excited FADH degrees, in line with a report that replacement of W306 with redox-inactive phenylalanine (W306F mutant) suppressed the electron transfer to the flavin [Li, Y. F., et al. (1991) Biochemistry 30, 6322-6329].

DNA photolyases repair UV-induced cyclobutane pyrimidine dimers in DNA by photoinduced electron transfer. The redox-active cofactor is FAD in its doubly reduced state FADH(-). Typically, during enzyme purification, the flavin is oxidized to its singly reduced semiquinone state FADH degrees. The catalytically potent state FADH(-) can be reestablished by so-called photoactivation. Upon photoexcitation, the FADH degrees is reduced by an intrinsic amino acid, the tryptophan W306 in Escherichia coli photolyase, which is 15 A distant. Initially, it has been believed that the electron passes directly from W306 to excited FADH degrees, in line with a report that replacement of W306 with redox-inactive phenylalanine (W306F mutant) suppressed the electron transfer to the flavin [Li, Y. F., et al. (1991) Biochemistry 30, 6322-6329].


2006   Références trouvées : 1

Villette, S ; Pigaglio-Deshayes, S ; Vever-Bizet, C ; Validire, P ; Bourg-Heckly, G  (2006)

Ultraviolet-induced autofluorescence characterization of normal and tumoral esophageal epithelium cells with quantitation of NAD(P)H

Photochemical & Photobiological Sciences 5 (5) 483-492
Cellular autofluorescence was characterized in normal human esophageal cells and in malignant esophageal epithelial cells. The study was performed under excitation at 351 nm where the cell fluorescence is mainly due to the reduced pyridine nucleotides (NAD(P) H) with a very small contribution from the oxidized flavins (FMN, FAD) or lipopigments. The autofluorescence emission of squamous cell carcinoma, adenocarcinoma on Barrett's mucosa and normal cells was characterized by microspectrofluorimetry on monolayers and by spectrofluorimetry on cell suspensions. The relative contribution of each fluorophore to the fluorescence emission of the different cell types was evaluated by a curve-fitting analysis.

Cellular autofluorescence was characterized in normal human esophageal cells and in malignant esophageal epithelial cells. The study was performed under excitation at 351 nm where the cell fluorescence is mainly due to the reduced pyridine nucleotides (NAD(P) H) with a very small contribution from the oxidized flavins (FMN, FAD) or lipopigments. The autofluorescence emission of squamous cell carcinoma, adenocarcinoma on Barrett’s mucosa and normal cells was characterized by microspectrofluorimetry on monolayers and by spectrofluorimetry on cell suspensions. The relative contribution of each fluorophore to the fluorescence emission of the different cell types was evaluated by a curve-fitting analysis.


2002   Références trouvées : 1

Bonnette, P ; Heckly, GB ; Villette, S ; Fragola, A  (2002)

Intraoperative photodynamic therapy after pleuropneumonectomy for malignant pleural mesothelioma

Chest 122 (5) 1866-1867


Mots-clés

Ingénieur de recherche , Complexes métalliques et IRM