Partenaires

CNRS


Rechercher


Accueil > Publications > Recherche par années > Années 2010 > 2017

2017

Page(s) : < | 1 | 2 | 3 | 4 | 5 | 6 |

A 3D model of tumour angiogenic microenvironment to monitor hypoxia effects on cell interactions and cancer stem cell selection

Tumour microenvironment determines the fate of treatments. Reconstitution of tumour conditions is mandatory for alternative in vitro methods devoted to cancer development and the selection of therapeutic strategies. This work describes a 3D model of melanoma growth in its environment. Introducing means to mimic tumour angiogenesis, which turns on tumour progression, the model shows that melanoma tumour spheroids allow reconstitution of solid tumours with stromal cells. Angiogenesis evidenced the differential recruitment of endothelial cells (EC) from early progenitors (EEPCs) to mature ECs. Hypoxia was the key parameter that selected and stabilized melanoma cancer stem like cells (CSCs) phenotype based on aldehyde dehydrogenase expression as the best criterion. The 3D-tumour-model demonstrated the distinct reactivity of ECs toward tumour cells in terms of cellular cross-talk and humoral response. Intra-spheroid cell-to-cell membrane dye exchanges, mediated by intercellular interactions, uncovered the melanoma-to-EEPC cooperation. The resulting changes in tumour milieu were evidenced by the chemokinic composition and hypoxia-related variations in microRNA expression assessed in each cellular component of the spheroids. This method brings new tools to decipher the molecular mechanism of tumour-mediated cell recruitment and for in vitro assessment of therapeutic approaches.

Lire la suite

A Dream of Simplicity : Scientific Computing on Turing Machines

Frustrated by another failed software installation ? Wondering why you can’t reproduce your colleagues’ computations ? This story will tell you why. It won’t magically solve your problems, but it does point out a glimpse of hope for the future.

Lire la suite

A Multiplatform Metabolomics Approach to Characterize Plasma Levels of Phenylalanine and Tyrosine in Phenylketonuria

BACKGROUND : Different pathophysiological mechanisms have been described in phenylketonuria (PKU) but the indirect metabolic consequences of metabolic disorders caused by elevated Phe or low Tyr concentrations remain partially unknown. We used a multiplatform metabolomics approach to evaluate the metabolic signature associated with Phe and Tyr.
MATERIAL AND METHODS : We prospectively included 10 PKU adult patients and matched controls. We analysed the metabolome profile using GC-MS (urine), amino-acid analyzer (urine and plasma) and nuclear magnetic resonance spectroscopy (urine). We performed a multivariate analysis from the metabolome (after exclusion of Phe, Tyr and directly derived metabolites) to explain plasma Phe and Tyr concentrations, and the clinical status. Finally, we performed a univariate analysis of the most discriminant metabolites and we identified the associated metabolic pathways.
RESULTS : We obtained a metabolic pattern from 118 metabolites and we built excellent multivariate models to explain Phe, Tyr concentrations and PKU diagnosis. Common metabolites of these models were identified : Gln, Arg, succinate and alpha aminobutyric acid. Univariate analysis showed an inverse correlation between Arg, alpha aminobutyric acid and Phe and a positive correlation between Arg, succinate, Gln and Tyr (p < 0.0003). Thus, we highlighted the following pathways : Arg and Pro, Ala, Asp and Glu metabolism.
DISCUSSION : We obtain a specific metabolic signature related to Tyr and Phe concentrations. We confirmed the involvement of different pathophysiological mechanisms previously described in PKU such as protein synthesis, energetic metabolism and oxidative stress. The metabolomics approach is relevant to explore PKU pathogenesis.

Lire la suite

A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach

In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System.

Lire la suite

Assessment of Heparanase-Mediated Angiogenesis Using Microvascular Endothelial Cells : Identification of λ-Carrageenan Derivative as a Potent Anti Angiogenic Agent

Heparanase is overexpressed by tumor cells and degrades the extracellular matrix proteoglycans through cleavage of heparan sulfates (HS), allowing pro-angiogenic factor release and thus playing a key role in tumor angiogenesis and metastasis. Here we propose new HS analogs as potent heparanase inhibitors : Heparin as a positive control, Dextran Sulfate, λ-Carrageenan, and modified forms of them obtained by depolymerization associated to glycol splitting (RD-GS). After heparanase activity assessment, 11 kDa RD-GS-λ-Carrageenan emerged as the most effective heparanase inhibitor with an IC(50) of 7.32 ng/mL compared to 10.7 ng/mL for the 16 kDa unfractionated heparin. The fractionated polysaccharides were then tested in a heparanase-rich medium-based in vitro model, mimicking tumor microenvironment, to determine their effect on microvascular endothelial cells (HSkMEC) angiogenesis. As a preliminary study, we identified that under hypoxic and nutrient poor conditions, MCF-7 cancer cells released much more mature heparanase in their supernatant than in normal conditions. Then a Matrigel(TM) assay using HSkMEC cultured under hypoxic conditions in the presence (or not) of this heparanase-rich supernatant was realized. Adding heparanase-rich media strongly enhanced angiogenic network formation with a production of twice more pseudo-vessels than with the control. When sulfated polysaccharides were tested in this angiogenesis assay, RD-GS-λ-Carrageenan was identified as a promising anti-angiogenic agent.

Lire la suite

Chemical shift assignments of the partially deuterated Fyn SH2–SH3 domain

Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1H, 15N and 13C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains.

Lire la suite

Cooperative loading of multisite receptors with lanthanide containers : an approach for organized luminescent metallopolymers

Metal-containing (bio)organic polymers are materials of continuously increasing importance for applications in energy storage and conversion, drug delivery, shape-memory items, supported catalysts, organic conductors and smart photonic devices. The embodiment of luminescent components provides a revolution in lighting and signaling with the ever-increasing development of polymeric light-emitting devices. Despite the unique properties expected from the introduction of optically and magnetically active lanthanides into organic polymers, the deficient control of the metal loading currently limits their design to empirical and poorly reproducible materials. We show here that the synthetic efforts required for producing soluble multi-site host systems Lk are largely overcome by the virtue of reversible thermodynamics for mastering the metal loading with the help of only two parameters : (1) the affinity of the luminescent lanthanide container for a single binding site and (2) the cooperative effect which modulates the successive fixation of metallic units to adjacent sites. When unsymmetrical perfluorobenzene-trifluoroacetylacetonate co-ligands (pbta−) are selected for balancing the charge of the trivalent lanthanide cations, Ln3+, in six-coordinate [Ln(pbta)3] containers, the explored anti-cooperative complexation processes induce nearest-neighbor intermetallic interactions image file : c7sc03710d-t1.tif twice as large as thermal energy at room temperature (RT = 2.5 kJ mol−1). These values have no precedent when using standard symmetrical containers and they pave the way for programming metal alternation in luminescent lanthanidopolymers.

Lire la suite

Coupling of Immunostimulants to Live Cells through Metabolic Glycoengineering and Bioorthogonal Click Chemistry

The present study investigated the potential of metabolic glycoengineering followed by bioorthogonal click chemistry for introducing into cell-surface glycans different immunomodulating molecules. Mouse tumor models EG7 and MC38-OVA were treated with Ac4GalNAz and Ac4ManNAz followed by ligation of immunostimulants to modified cell-surface glycans of the living cells through bioorthogonal click chemistry. The presence of covalently bound oligosaccharide and oligonucleotide immunostimulants could be clearly established. The activation of a reporter macrophage cell line was determined. Depending on the tumor cell line, covalently and noncovalently bound CpG activated the macrophages by between 67 and 100% over controls. EG7 cells with covalently attached immunostimulants and controls were injected subcutaneously into C57BL/6 mice. All tumor cells subjected to the complete treatment with control molecules formed tumors like nontreated cells confirming cell viability. However, when CpG oligonucleotide was linked to cell-surface glycans, tumor growth was slowed significantly (60% reduction, n = 10, by covalently bound CpG compared to noncovalently bound CpG, n = 10). When mice that had not developed large tumors were challenged with unmodified EG7 cells, no new tumors developed, suggesting protection through the immune system.

Lire la suite

Curcumin/poly(2-methyl-2-oxazoline-b-tetrahydrofuran-b-2-methyl-2-oxazoline) formulation : An improved penetration and biological effect of curcumin in F508del-CFTR cell lines

Neutral amphiphilic triblock ABA copolymers are of great interest to solubilize hydrophobic drugs. We reported that a triblock ABA copolymer consisting of methyl-2-oxazoline (MeOx) and tetrahydrofuran (THF) (MeOx6-THF19-MeOx6) (TBCP2) can solubilize curcumin (Cur) a very hydrophobic molecule exhibiting multiple therapeutic effects but whose insolubility and low stability in water is a major drawback for clinical applications. Here, we provide evidences by flow cytometry and confocal microscopy that Cur penetration in normal and DeltaF508-CFTR human airway epithelial cell lines is facilitated by TBCP2. When used on DeltaF508-CFTR cell lines, the Cur/TBCP2 formulation promotes the restoration of the expression of the CFTR protein in the plasma membrane. Furthermore, patch-clamp and MQAE fluorescence experiments show that this effect is associated with a correction of a Cl- selective current at the membrane surface of F508del-CFTR cells. The results show the great potential of the neutral amphiphilic triblock copolymer MeOx6-THF19-MeOx6 as carrier for curcumin in a Cystic Fibrosis context. We anticipate that other MeOxn-THFm-MeOxn copolymers could have similar behaviours for other highly insoluble therapeutic drugs or cosmetic active ingredients.

Lire la suite

Draft Genome of Halomonas lionensis RHS90T, a Stress-Tolerant Gammaproteobacterium Isolated from Mediterranean Sea Sediments

Members of the genus Halomonas are physiologically versatile and harbor ecological adaptations enabling the colonization of contrasted environments. We present here the draft genome of Halomonas lionensis RHS90T, isolated from Mediterranean Sea sediments. Numerous genes related to stress tolerance, DNA repair, or external signal-sensing systems were predicted, which could represent selective advantages of this marine bacterium.

Lire la suite

Page(s) : < | 1 | 2 | 3 | 4 | 5 | 6 |