Partenaires

CNRS


Rechercher


Accueil > Publications > Recherche par années > Années 2010 > 2017

2017

A Multiplatform Metabolomics Approach to Characterize Plasma Levels of Phenylalanine and Tyrosine in Phenylketonuria

BACKGROUND : Different pathophysiological mechanisms have been described in phenylketonuria (PKU) but the indirect metabolic consequences of metabolic disorders caused by elevated Phe or low Tyr concentrations remain partially unknown. We used a multiplatform metabolomics approach to evaluate the metabolic signature associated with Phe and Tyr.
MATERIAL AND METHODS : We prospectively included 10 PKU adult patients and matched controls. We analysed the metabolome profile using GC-MS (urine), amino-acid analyzer (urine and plasma) and nuclear magnetic resonance spectroscopy (urine). We performed a multivariate analysis from the metabolome (after exclusion of Phe, Tyr and directly derived metabolites) to explain plasma Phe and Tyr concentrations, and the clinical status. Finally, we performed a univariate analysis of the most discriminant metabolites and we identified the associated metabolic pathways.
RESULTS : We obtained a metabolic pattern from 118 metabolites and we built excellent multivariate models to explain Phe, Tyr concentrations and PKU diagnosis. Common metabolites of these models were identified : Gln, Arg, succinate and alpha aminobutyric acid. Univariate analysis showed an inverse correlation between Arg, alpha aminobutyric acid and Phe and a positive correlation between Arg, succinate, Gln and Tyr (p < 0.0003). Thus, we highlighted the following pathways : Arg and Pro, Ala, Asp and Glu metabolism.
DISCUSSION : We obtain a specific metabolic signature related to Tyr and Phe concentrations. We confirmed the involvement of different pathophysiological mechanisms previously described in PKU such as protein synthesis, energetic metabolism and oxidative stress. The metabolomics approach is relevant to explore PKU pathogenesis.

Lire la suite

Efficient synthesis of cysteine-rich cyclic peptides through intramolecular native chemical ligation of N-Hnb-Cys peptide crypto-thioesters

We herein introduce a straightforward synthetic route to cysteine-containing cyclic peptides based on the intramolecular native chemical ligation of in situ generated thioesters. Key precursors are N-Hnb-Cys crypto-thioesters, easily synthesized by Fmoc-based SPPS. The strategy is applied to a representative range of naturally occurring cyclic disulfide-rich peptide sequences.

Lire la suite

Highly selective capture of minicircle DNA biopharmaceuticals by a novel zinc-histidine peptide conjugate

The use of minicircle DNA (mcDNA) biomolecules as a pharmaceutical product holds remarkable potential due to their improved therapeutic efficacy in comparison with standard non-viral gene expression vectors. However, mcDNA translation into clinical application is still highly restricted due to the lack of robust technologies for minicircles detection and purification. In this study, the potential of a zinc-binding histidine-based peptide to function as a novel ligand for mcDNA recovery was investigated by using high-throughput surface plasmon resonance (SPR) analysis. The histidine-based peptide successfully bound zinc cationic ions and had affinity towards mcDNA biomolecules as confirmed by the dynamic binding responses obtained in SPR experiments. Notably, the obtained results indicate that not only zinc-peptide ligands are able to bind mcDNA with very high affinity (K-D = 4.21 x 10(-10) M), but also that this interaction is mostly dependent on buffer type. In general, the findings indicated that Zn2+ bound peptide has high affinity to mcDNA in low ionic strength buffers, whereas with high salt buffers no binding is detected. Overall, the novel zinc-binding peptide has shown to have suitable properties for mcDNA binding and recovery under experimental conditions that assure genetic material stability. More importantly, the straightforward approach of employing simple biomimetic ligands for mcDNA capture will contribute for development of new technologies to purify DNA biopharmaceuticals.

Lire la suite

Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection

Amino acids play a key role in food analysis, clinical diagnostics, and biochemical research. Capillary electrophoresis with laser-induced fluorescence detection was used for the analysis of several amino acids. Amino acid labeling with fluorescein isothiocyanate was conducted using microwave-assisted derivatization at 80 degrees C (680 W) during only 150 s. Good electrophoretic resolution was obtained using a background electrolyte composed of sodium tetraborate buffer (100 mM ; pH 9.4) and -cyclodextrin (10 mM), and the limits of quantification were 3-30 nM. The developed capillary electrophoresis with laser-induced fluorescence method was used to analyze amino acids in Dunaliella salina green algae grown under different conditions. A simple extraction technique based on electroporation of the cell membrane was introduced. A home-made apparatus allowed the application of direct and alternating voltages across the electrochemical compartment containing a suspension of microalgae in distilled water at 2.5 g/L. A direct voltage of 12 V applied for 4 min gave the optimum extraction yield. Results were comparable to those obtained with accelerated-solvent extraction. The efficiency of electroporation in destroying microalgae membranes was shown by examining the algae surface morphology using scanning electron microscopy. Stress conditions were found to induce the production of amino acids in Dunaliella salina cells.

Lire la suite

MicroRNAs in Neurocognitive Dysfunctions : New Molecular Targets for Pharmacological Treatments ?

BACKGROUND : Neurodegenerative and cognitive disorders are multifactorial diseases (i.e., involving neurodevelopmental, genetic, age or environmental factors) characterized by an abnormal development that affects neuronal function and integrity. Recently, an increasing number of studies revealed that the dysregulation of microRNAs (miRNAs) may be involved in the etiology of cognitive disorders as Alzheimer, Parkinson, and Huntington’s diseases, Schizophrenia and Autism spectrum disorders.
METHODS : From an extensive search in bibliographic databases of peer-reviewed research literature, we identified relevant published studies related to specific key words such as memory, cognition, neurodegenerative disorders, neurogenesis and miRNA. We then analysed, evaluated and summerized scientific evidences derived from these studies.
RESULTS : We first briefly summarize the basic molecular events involved in memory, a process inherent to cognitive disease, and then describe the role of miRNAs in neurodevelopment, synaptic plasticity and memory. Secondly, we provide an overview of the impact of miRNA dysregulation in the pathogenesis of different neurocognitive disorders, and lastly discuss the feasibility of miRNA-based therapeutics in the treatment of these disorders.
CONCLUSION : This review highlights the molecular basis of neurodegenerative and cognitive disorders by focusing on the impact of miRNAs dysregulation in these pathological phenotypes. Altogether, the published reports suggest that miRNAs-based therapy could be a viable therapeutic alternative to current treatment options in the future.

Lire la suite

Pharmacomodulation of microRNA expression in neurocognitive diseases : obstacles and future opportunities

Given the importance of microRNAs (miRNAs) in modulating brain functions and their implications in neurocognitive disorders there are currently significant efforts devoted in the field of miRNA-based therapeutics to correct and/or to treat these brain diseases. The observation that miRNA 29a/b-1 cluster, miRNA 10b and miRNA 7, for instance, are frequently deregulated in the brains of patients with neurocognitive diseases and in animal models of Alzheimer, Huntington’s and Parkinson’s diseases, suggest that correction of miRNA expression using agonist or antagonist miRNA oligonucleotides might be a promising approach to correct or even to cure such diseases. The encouraging results from recent clinical trials allow envisioning that pharmacological approaches based on miRNAs might, in a near future, reach the requirements for successful therapeutic outcomes and will improve the healthcare of patients with brain injuries or disorders. This review will focus on the current strategies used to modulate pharmacological function of miRNA using chemically modified oligonucleotides. We will then review the recent literature on strategies to improve nucleic acid delivery across the blood-brain barrier which remains a severe obstacle to the widespread application of miRNA therapeutics to treat brain diseases. Finally, we provide a state-of-art of current preclinical research performed in animal models for the treatment of neurocognitive disorders using miRNA as therapeutic agents and discuss future developments of miRNA therapeutics.

Lire la suite

Spermaurin, an La1-like peptide from the venom of the scorpion Scorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species

STUDY QUESTION
Is it possible to identify original compounds that are able to enhance sperm motility from the venom of the scorpion Scorpio maurus palmatus ?
SUMMARY ANSWER
We identified a potent disulfide-rich peptide (DRP) of 73 amino acids that significantly improved the motility of fresh and frozen-thawed sperm in different mammalian species, including human, and improved fertilization outcome in mouse IVF experiments.
WHAT IS KNOWN ALREADY
Any disturbance of sperm motility has a strong impact on fertilization and can lead to subfertility or infertility. Significant efforts have, therefore, been made to identify pharmacological drugs that might improve sperm motility. Such compounds are particularly useful in azoospermia to improve testicular sperm extraction and in the domain of cryopreservation because the motility of frozen-thawed sperm is reduced.
STUDY DESIGN, SIZE, DURATION
This was a basic science/medical research study aimed at identifying original compounds from a library of venoms able to enhance mammalian sperm motility, including human. We first identified in the venom of a scorpion S. m. palmatus a fraction able to potently activate sperm motility. We next purified and characterized the compound by liquid chromatography, mass spectrometry and peptide synthesis. Finally, the potency and toxicity of both purified and synthetic versions of the identified compound on sperm motility were assessed using different in vitro tests in different mammalian species.
PARTICIPANTS/MATERIALS, SETTING, METHODS
For human sperm, biological samples were collected from normozoospermic donors and subfertile patients attending a reproduction department for diagnostic semen analysis. Testicular sperm was collected from cynomolgus monkeys (Macaca fascicularis) euthanized for the needs of specific authorized research projects. The peptide was also tested on bovine and mouse epidydimal sperm. We measured different sperm motility parameters with a computer-assisted sperm analysis system in the presence or absence of the peptide.
MAIN RESULTS AND THE ROLE OF CHANCE
Size exclusion chromatography enabled us to isolate a fraction of the venom of S. m. palmatus able to increase sperm motility. By liquid chromatography and mass spectrometry, a peptide comprising 73 amino acids with 4 disulfide bridges was identified as responsible for the biological activity and called ‘spermaurin’. The identity of spermaurin was confirmed by chemical synthesis. We showed that the peptide increased the motility of fresh and frozen-thawed human sperm. We observed that the potency of the peptide was higher on fresh ejaculated spermatozoa with a low motility, achieving a 100% increase of curvilinear velocity in poorly performing sperm. We also demonstrated that peptide is effective on bovine and mouse fresh epididymal, bovine frozen-thawed ejaculated and fresh non-human primate testicular sperm. Finally, in mouse IVF, the production of 2-cell embryos was increased by 24% when sperm were treated with the peptide.
LIMITATIONS, REASONS FOR CAUTION
This work is an in vitro evaluation of the ability of spermaurin to improve sperm motility parameters. Another limitation of this study is the small number of human sperm samples tested with the natural (n = 36) and synthetic (n = 12) peptides. Moreover, the effect of the peptide on IVF outcome was only tested in mouse and further tests with human and bovine gametes are required to confirm and extend this result in other mammalian species.
WIDER IMPLICATIONS OF THE FINDINGS
This work confirms our initial study showing that venoms represent an interesting source of molecules that are able to modify sperm physiology. Moreover, this work presents the first demonstrated biological action of a venom peptide from the scorpion S. m. palmatus with sequence similarities to La1 peptide from Liocheles australasiae (Wood scorpion), a widespread family of DRPs.
LARGE SCALE DATA
Not applicable.
STUDY FUNDING/COMPETING INTEREST(S)
This work is part of the project ‘LAB COM-14 LAB7 0004 01-LIPAV’, funded by the program LabCom 2014 from t e French Research Agency (ANR). Dr Arnoult reports grants from IMV Technologies during the conduct of the study. In addition, Drs Arnoult, Martinez, Ray and Schmitt have a patent EP16305642.7 pending containing some of the information presented in this manuscript.

Lire la suite

The Roles of Code in Computational Science

Many of us write code regularly as part of our scientific activity, perhaps even as a full-time job. But even though we write—and use—more and more code, we rarely think about the roles that this code will have in our research, in our publications, and ultimately in the scientific record. In this article, the author outlines some frequent roles of code in computational science. These roles aren’t exclusive ; in fact, it’s common for a piece of code to have several roles, at the same time or as an evolution over time. Thinking about these roles, ideally before starting to write the code, is a good habit to develop.

Lire la suite