Partenaires

CNRS


Rechercher


Accueil > Annuaire

Westall Frances


email

tél : 02.38.25.79.12 - fax : 02.38.63.15.17

Publications

2016   Références trouvées : 7

Westall, F.  (2016)

Microbial palaeontology and the origin of life : a personal approach

Bollettino della Società Paleontologica Italiana (2016)55 (2) 85-103 - doi : 10.4435/BSPI.2016.09
Palaeontology is an essential tool for tracing the history of life in the geological record. However, access to the origin of

life is blocked because of the lack of preservation of suitable rocks dating from the fi rst billion years of Earth’s history. Nevertheless, study

of Early Archaean rocks ( 4-3.3 Ga) indicates that the environmental conditions of the early Earth, upon which life emerged, were very

different to those of today and provides essential information for guiding investigations into the origin of life in terms of realistic environmental scenarios and possible timing of the appearance of life. Microbial palaeontology investigations of well-preserved, Early Archaean rocks 3.5

to 3.3 Ga show that the earliest preserved life was diverse and widespread and suggest that it probably appeared in the Hadean, as soon as

the Earth’s surface was habitable. The extreme, anaerobic conditions characterising the early Earth, together with the ingredients of life,

i.e. carbon molecules, liquid water and energy, were common on other planets and satellites in the early Solar System. Considering carbon

and water-based life forms to be a cosmically frequent phenomenon, it is hypothesised that life could have emerged on some of these bodies

and that traces of its appearance may still be preserved, for instance on Mars, Europa or Enceladus. Microbial palaeontology as well as

information gleaned from extant extremophiles and experimental data provides us with essential information about what kinds of extant or

fossilised life forms to look for on another planet or satellite. Moreover, the methods evolved to study and understand the remains of fossil

traces of primitive microbial life will aid the search for life and its origins on Mars or other satellites. The perspective of returning to Earth

rocks from Mars (or other samples from Europa or Enceladus ?) containing potential traces of extraterrestrial life, most likely primitive

anaerobic chemotrophs, will be a challenge for microbial palaeontology that we need to start addressing now. Most importantly, it will open

up the possibility of establishing the universality of life.

Palaeontology is an essential tool for tracing the history of life in the geological record. However, access to the origin of
life is blocked because of the lack of preservation of suitable rocks dating from the fi rst billion years of Earth’s history. Nevertheless, study
of Early Archaean rocks ( 4-3.3 Ga) indicates that the environmental conditions of the early Earth, upon which life emerged, were very
different to those of today and provides essential information for guiding investigations into the origin of life in terms of realistic environmental scenarios and possible timing of the appearance of life. Microbial palaeontology investigations of well-preserved, Early Archaean rocks 3.5
to 3.3 Ga show that the earliest preserved life was diverse and widespread and suggest that it probably appeared in the Hadean, as soon as
the Earth’s surface was habitable. The extreme, anaerobic conditions characterising the early Earth, together with the ingredients of life,
i.e. carbon molecules, liquid water and energy, were common on other planets and satellites in the early Solar System. Considering carbon
and water-based life forms to be a cosmically frequent phenomenon, it is hypothesised that life could have emerged on some of these bodies
and that traces of its appearance may still be preserved, for instance on Mars, Europa or Enceladus. Microbial palaeontology as well as
information gleaned from extant extremophiles and experimental data provides us with essential information about what kinds of extant or
fossilised life forms to look for on another planet or satellite. Moreover, the methods evolved to study and understand the remains of fossil
traces of primitive microbial life will aid the search for life and its origins on Mars or other satellites. The perspective of returning to Earth
rocks from Mars (or other samples from Europa or Enceladus ?) containing potential traces of extraterrestrial life, most likely primitive
anaerobic chemotrophs, will be a challenge for microbial palaeontology that we need to start addressing now. Most importantly, it will open
up the possibility of establishing the universality of life.

Dass A. V., Hickman-Lewis K., Brack A., Kee T. P. and Westall F.  (2016)

Stochastic Prebiotic Chemistry within Realistic Geological Systems

ChemistrySelect (2016) 1 (15) 4906-4926 - doi : 10.1002/slct.201600829
This review introduces its readers to a ‘stochastic approach’ to origins of life research, from the viewpoints of both prebiotic chemistry and geology. The idea of a “primordial soup” has been subject to extensive criticism from thermodynamic, biochemical and geochemical perspectives, yet recent advancements have made clearer the plausibility of this theory. Herein, we review the theoretical and experimental approaches which have previously been explored, among these modelling, laboratory-confined and geologically motivated experimentation. Of these, we consider organo-mineral interactions, uniting aspects of prebiotic chemistry and geology, to be an especially promising way forward. However, we aim here to advance current approaches by advocating a methodology involving chemical systems and their stochastic reactivity on heterogeneous geological surfaces. This models the origins of life as a continuity of chemical reactions in an analogue to the early Earth (Hadean) environment.

This review introduces its readers to a ‘stochastic approach’ to origins of life research, from the viewpoints of both prebiotic chemistry and geology. The idea of a “primordial soup” has been subject to extensive criticism from thermodynamic, biochemical and geochemical perspectives, yet recent advancements have made clearer the plausibility of this theory. Herein, we review the theoretical and experimental approaches which have previously been explored, among these modelling, laboratory-confined and geologically motivated experimentation. Of these, we consider organo-mineral interactions, uniting aspects of prebiotic chemistry and geology, to be an especially promising way forward. However, we aim here to advance current approaches by advocating a methodology involving chemical systems and their stochastic reactivity on heterogeneous geological surfaces. This models the origins of life as a continuity of chemical reactions in an analogue to the early Earth (Hadean) environment.

Schwenzer S. P., Bridges J.-C., Wiens R. C., Conrad P. G., Kelley S. P., Leveille R., Mangold N., Martín-Torres J., McAdam A., Newsom H., Paz Zorzano M., Rapin W., Spray J., Treiman A.H., Westall F. and Fairen A.  (2016)

Fluids in Sediment alteration and Sulfate Vein Formation at Gale Crater, Mars

Meteoritics and Planetary Science (2016) 51 (11) 2175-2202 - doi : 10.1111/maps.12668
We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si ; had low Mg, Fe, and Al concentrations—relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids ; and had near neutral to alkaline pH. Ca and S species were present in the 10−3 to 10−2 concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater-type fluid formed impure sulfate- and silica-rich deposits—veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.

We model the fluids involved in the alteration processes recorded in the Sheepbed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si ; had low Mg, Fe, and Al concentrations—relative to terrestrial groundwaters such as the Deccan Traps and other modeled Mars fluids ; and had near neutral to alkaline pH. Ca and S species were present in the 10−3 to 10−2 concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this groundwater-type fluid formed impure sulfate- and silica-rich deposits—veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay, or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.

Manzari P., De Angelis S., De Sanctis M. C., Di Iorio T., Ammannito E., Bost N., Foucher F. and Westall F.  (2016)

Microimaging VIS-IR spectroscopy of ancient volcanic rocks as Mars analogues

Earth and Space Science (2016) 3 (7) 268-281 - doi : 10.1002/2015EA000153
The SPectral Imager (SPIM) facility is a laboratory VIS-IR spectrometer developed to support spaceborne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the Dawn NASA mission and to support the 2018 ExoMars mission in the spectral investigation of Martian subsurface. Specifically, for this mission, a selection of relevant Mars analogue materials has been characterized and stored in the International Space Analogue Rockstore (ISAR), hosted in Orléans, France. In this investigation, two volcanic rock samples from the ISAR collection were analyzed. These two samples were chosen because of their similarity in mineralogical composition and age with Martian basalts and volcanic sands. Moreover, volcanic sands are particularly interesting because they can contain fossils of primitive life forms. The analysis of data collected by SPIM resulted in good agreement with the mineralogical phases detected in these two samples by mineralogical and petrographical techniques, demonstrating the effectiveness of the high spatial and spectral resolution of SPIM for identifying and for mapping different mineralogical species on cut rock and mineral samples.

The SPectral Imager (SPIM) facility is a laboratory VIS-IR spectrometer developed to support spaceborne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the Dawn NASA mission and to support the 2018 ExoMars mission in the spectral investigation of Martian subsurface. Specifically, for this mission, a selection of relevant Mars analogue materials has been characterized and stored in the International Space Analogue Rockstore (ISAR), hosted in Orléans, France. In this investigation, two volcanic rock samples from the ISAR collection were analyzed. These two samples were chosen because of their similarity in mineralogical composition and age with Martian basalts and volcanic sands. Moreover, volcanic sands are particularly interesting because they can contain fossils of primitive life forms. The analysis of data collected by SPIM resulted in good agreement with the mineralogical phases detected in these two samples by mineralogical and petrographical techniques, demonstrating the effectiveness of the high spatial and spectral resolution of SPIM for identifying and for mapping different mineralogical species on cut rock and mineral samples.

Delarue F., Rouzaud J.-N., Derenne S., Bourbin M., Westall F., Kremer B., Sugitani K., Deldicque D. and Robert F.   (2016)

The Raman-derived carbonization continuum : a tool to select the best preserved molecular structures in Archean kerogens

Astrobiology (2016) 16 (6) 407-417 - doi : 10.1089/ast.2015.1392
The search for indisputable traces of life in Archean cherts is of prime importance. However, their great age and metamorphic history pose constraints on the study of molecular biomarkers. We propose a quantitative criterion to document the thermal maturity of organic matter in rocks in general, and Archean rocks in particular. This is definitively required to select the best candidates for seeking non-altered sample remnants of life. Analysis of chemical (Raman spectroscopy, (13)C NMR, elemental analysis) and structural (HRTEM) features of Archean and non-Archean carbonaceous matter (CM) that was submitted to metamorphic grades lower than, or equal to, that of greenschist facies showed that these features had all undergone carbonization but not graphitization. Raman-derived quantitative parameters from the present study and from literature spectra, namely, R1 ratio and FWHM-D1, were used to draw a carbonization continuum diagram showing two carbonization stages. While non-Archean samples can be seen to dominate the first stage, the second stage mostly consists of the Archean samples. In this diagram, some Archean samples fall at the boundary with non-Archean samples, which thus demonstrates a low degree of carbonization when compared to most Archean CM. As a result, these samples constitute candidates that may contain preserved molecular signatures of Archean CM. Therefore, with regard to the search for the oldest molecular traces of life on Earth, we propose the use of this carbonization continuum diagram to select the Archean CM samples.

The search for indisputable traces of life in Archean cherts is of prime importance. However, their great age and metamorphic history pose constraints on the study of molecular biomarkers. We propose a quantitative criterion to document the thermal maturity of organic matter in rocks in general, and Archean rocks in particular. This is definitively required to select the best candidates for seeking non-altered sample remnants of life. Analysis of chemical (Raman spectroscopy, (13)C NMR, elemental analysis) and structural (HRTEM) features of Archean and non-Archean carbonaceous matter (CM) that was submitted to metamorphic grades lower than, or equal to, that of greenschist facies showed that these features had all undergone carbonization but not graphitization. Raman-derived quantitative parameters from the present study and from literature spectra, namely, R1 ratio and FWHM-D1, were used to draw a carbonization continuum diagram showing two carbonization stages. While non-Archean samples can be seen to dominate the first stage, the second stage mostly consists of the Archean samples. In this diagram, some Archean samples fall at the boundary with non-Archean samples, which thus demonstrates a low degree of carbonization when compared to most Archean CM. As a result, these samples constitute candidates that may contain preserved molecular signatures of Archean CM. Therefore, with regard to the search for the oldest molecular traces of life on Earth, we propose the use of this carbonization continuum diagram to select the Archean CM samples.

Cottin H. and 29 authors incl. Westall F.  (2016)

Space as a Tool for Astrobiology : review and recommendations for experimentations in Earth orbit and beyond

Space Science Reviews (sous presse)

Rettberg P., Anesio A. M., Baker V. R., Baross J. A., Cady S. L., Detsis E., Foreman C. M., Hauber E., Ori G. G., Pearce D. A., Renno N. O., Ruvkun G., Sattler B., Saunders M. P., Smith, David H., Wagner D. and Westall F.  (2016)

Planetary Protection and Mars Special Regions - A Suggestion for Updating the Definition

Astrobiology (2016) 16 (2) 119-125 - doi : 10.1089/ast.2016.1472
We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars ?Special Regions, ? areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions.

We highlight the role of COSPAR and the scientific community in defining and updating the framework of planetary protection. Specifically, we focus on Mars ?Special Regions, ? areas where strict planetary protection measures have to be applied before a spacecraft can explore them, given the existence of environmental conditions that may be conducive to terrestrial microbial growth. We outline the history of the concept of Special Regions and inform on recent developments regarding the COSPAR policy, namely, the MEPAG SR-SAG2 review and the Academies and ESF joint committee report on Mars Special Regions. We present some new issues that necessitate the update of the current policy and provide suggestions for new definitions of Special Regions. We conclude with the current major scientific questions that remain unanswered regarding Mars Special Regions.


2015   Références trouvées : 10

Bridges, J. C. Schwenzer, S. P. Leveille, R. Westall F., Wiens R. C., Mangold N., Bristow T., Edwards P. and Berger G.  (2015)

Diagenesis and clay mineral formation at Gale Crater, Mars

Journal of Geophysical Research : Planets (2016) 120 (1) 1-19. doi : 10.1002/2014JE004757
The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of 7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

The Mars Science Laboratory rover Curiosity found host rocks of basaltic composition and alteration assemblages containing clay minerals at Yellowknife Bay, Gale Crater. On the basis of the observed host rock and alteration minerals, we present results of equilibrium thermochemical modeling of the Sheepbed mudstones of Yellowknife Bay in order to constrain the formation conditions of its secondary mineral assemblage. Building on conclusions from sedimentary observations by the Mars Science Laboratory team, we assume diagenetic, in situ alteration. The modeling shows that the mineral assemblage formed by the reaction of a CO2-poor and oxidizing, dilute aqueous solution (Gale Portage Water) in an open system with the Fe-rich basaltic-composition sedimentary rocks at 10–50°C and water/rock ratio (mass of rock reacted with the starting fluid) of 100–1000, pH of 7.5–12. Model alteration assemblages predominantly contain phyllosilicates (Fe-smectite, chlorite), the bulk composition of a mixture of which is close to that of saponite inferred from Chemistry and Mineralogy data and to that of saponite observed in the nakhlite Martian meteorites and terrestrial analogues. To match the observed clay mineral chemistry, inhomogeneous dissolution dominated by the amorphous phase and olivine is required. We therefore deduce a dissolving composition of approximately 70% amorphous material, with 20% olivine, and 10% whole rock component.

Westall, F. Foucher, F. Bost, N. Bertrand, M. Loizeau, D. Vago, J. L. Kminek, G. Gaboyer, F. Campbell, K. A. Breheret, J. G. Gautret, P. Cockell, C. S.  (2015)

Biosignatures on Mars : What, Where, and How ? Implications for the Search for Martian Life

Astrobiology (2015) 15 (11) 998-1029 - doi : 10.1089/ast.2015.1374
The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This "punctuated" scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5-3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. KEY WORDS : Mars-Early Earth-Anaerobic chemotrophs-Biosignatures-Astrobiology missions to Mars.

The search for traces of life is one of the principal objectives of Mars exploration. Central to this objective is the concept of habitability, the set of conditions that allows the appearance of life and successful establishment of microorganisms in any one location. While environmental conditions may have been conducive to the appearance of life early in martian history, habitable conditions were always heterogeneous on a spatial scale and in a geological time frame. This "punctuated" scenario of habitability would have had important consequences for the evolution of martian life, as well as for the presence and preservation of traces of life at a specific landing site. We hypothesize that, given the lack of long-term, continuous habitability, if martian life developed, it was (and may still be) chemotrophic and anaerobic. Obtaining nutrition from the same kinds of sources as early terrestrial chemotrophic life and living in the same kinds of environments, the fossilized traces of the latter serve as useful proxies for understanding the potential distribution of martian chemotrophs and their fossilized traces. Thus, comparison with analog, anaerobic, volcanic terrestrial environments (Early Archean >3.5-3.33 Ga) shows that the fossil remains of chemotrophs in such environments were common, although sparsely distributed, except in the vicinity of hydrothermal activity where nutrients were readily available. Moreover, the traces of these kinds of microorganisms can be well preserved, provided that they are rapidly mineralized and that the sediments in which they occur are rapidly cemented. We evaluate the biogenicity of these signatures by comparing them to possible abiotic features. Finally, we discuss the implications of different scenarios for life on Mars for detection by in situ exploration, ranging from its non-appearance, through preserved traces of life, to the presence of living microorganisms. KEY WORDS : Mars-Early Earth-Anaerobic chemotrophs-Biosignatures-Astrobiology missions to Mars.

Stevenson, A., Burkhardt, J., Cockell, C. S., Cray, J. A. Dijksterhuis, J. Fox-Powell, M., Kee, T. P., Kminek, G., McGenity, T. J., Timmis, K. N., Timson, D. J., Voytek, M. A., Westall, F., Yakimov, M. M., Hallsworth, J. E.  (2015)

Multiplication of microbes below 0.690 water activity : implications for terrestrial and extraterrestrial life

Environmental Microbiology (2015) 17 (2) 257-277 - doi : 10.1111/1462-2920.12598
Since a key requirement of known life forms is available water (water activity ; aw), recent searches for signatures of past life in terrestrial and extraterrestrial environments have targeted places known to have contained significant quantities of biologically available water. However, early life on Earth inhabited high-salt environments, suggesting an ability to withstand low water-activity. The lower limit of water activity that enables cell division appears to be ∼ 0.605 which, until now, was only known to be exhibited by a single eukaryote, the sugar-tolerant, fungal xerophile Xeromyces bisporus. The first forms of life on Earth were, though, prokaryotic. Recent evidence now indicates that some halophilic Archaea and Bacteria have water-activity limits more or less equal to those of X. bisporus. We discuss water activity in relation to the limits of Earth's present-day biosphere ; the possibility of microbial multiplication by utilizing water from thin, aqueous films or non-liquid sources ; whether prokaryotes were the first organisms able to multiply close to the 0.605-aw limit ; and whether extraterrestrial aqueous milieux of ≥ 0.605 aw can resemble fertile microbial habitats found on Earth.

Since a key requirement of known life forms is available water (water activity ; aw), recent searches for signatures of past life in terrestrial and extraterrestrial environments have targeted places known to have contained significant quantities of biologically available water. However, early life on Earth inhabited high-salt environments, suggesting an ability to withstand low water-activity. The lower limit of water activity that enables cell division appears to be ∼ 0.605 which, until now, was only known to be exhibited by a single eukaryote, the sugar-tolerant, fungal xerophile Xeromyces bisporus. The first forms of life on Earth were, though, prokaryotic. Recent evidence now indicates that some halophilic Archaea and Bacteria have water-activity limits more or less equal to those of X. bisporus. We discuss water activity in relation to the limits of Earth’s present-day biosphere ; the possibility of microbial multiplication by utilizing water from thin, aqueous films or non-liquid sources ; whether prokaryotes were the first organisms able to multiply close to the 0.605-aw limit ; and whether extraterrestrial aqueous milieux of ≥ 0.605 aw can resemble fertile microbial habitats found on Earth.

Kieft, T.L., Onstott, T.C., Ahonen, L., Aloisi, V., Colwell, F.S., Engelen B., Fendrihan S., Gaidos E., Harms U., Head I., Kallmeyer J., Kiel Reese B., Lin L.-H., Long P. E., Moser D. P., Mills H., Sar P., Schulze-Makuch D., Stan-Lotter H., Wagner D., Wang P.-L., Westall F., Wilkins M. J.   (2015)

Workshop to developp deep-life continental scientific drilling projects

Scientific Drilling (2015) 19 43-53 - doi : 10.5194/sd-19-43-2015
The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following : “(1) What is the extent and diversity of deep microbial life and what are the factors limiting it ? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity ? (3) How is deep microbial life adapted to subsurface conditions ? (4) How do subsurface microbial communities affect energy resources ? And (5) how does the deep biosphere interact with the geosphere and atmosphere ?” (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component ; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for eep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two articipants from nine countries proposed projects and sites that included ompressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.

The International Continental Scientific Drilling Program (ICDP) has long espoused studies of deep subsurface life, and has targeted fundamental questions regarding subsurface life, including the following : “(1) What is the extent and diversity of deep microbial life and what are the factors limiting it ? (2) What are the types of metabolism/carbon/energy sources and the rates of subsurface activity ? (3) How is deep microbial life adapted to subsurface conditions ? (4) How do subsurface microbial communities affect energy resources ? And (5) how does the deep biosphere interact with the geosphere and atmosphere ?” (Horsfield et al., 2014) Many ICDP-sponsored drilling projects have included a deep-life component ; however, to date, not one project has been driven by deep-life goals, in part because geomicrobiologists have been slow to initiate deep biosphere-driven ICDP projects. Therefore, the Deep Carbon Observatory (DCO) recently partnered with the ICDP to sponsor a workshop with the specific aim of gathering potential proponents for eep-life-driven ICDP projects and ideas for candidate drilling sites. Twenty-two articipants from nine countries proposed projects and sites that included ompressional and extensional tectonic environments, evaporites, hydrocarbon-rich shales, flood basalts, Precambrian shield rocks, subglacial and subpermafrost environments, active volcano–tectonic systems, megafan deltas, and serpentinizing ultramafic environments. The criteria and requirements for successful ICDP applications were presented. Deep-life-specific technical requirements were discussed and it was concluded that, while these procedures require adequate planning, they are entirely compatible with the sampling needs of other disciplines. As a result of this workshop, one drilling workshop proposal on the Basin and Range Physiographic Province (BRPP) has been submitted to the ICDP, and several other drilling project proponents plan to submit proposals for ICDP-sponsored drilling workshops in 2016.

Cottin, H., Saiagh, K., Nguyen, D., Grand, N., Bénilan, Y., Cloix, M., Coll, P., Gazeau, M.-C., Fray, N., Khalaf, D., Raulin, F., Stalport, F., Carrasco, N., Szopa, C., Chaput, D., Bertrand, M., Westall, F., Mattioda, A., Quinn, R., Ricco, A., Santos, O., Baratta, G., Strazzulla, G., Palumbo, M.E., Postollec, A.L., Dobrijevic, M., Coussot, G., Vigier, F., Vandenabeele-Trambouze, O., Incerti, S., Berger, T.  (2015)

Photochemical studies in low Earth orbit for organic compounds related to small bodies, Titan and Mars. Current and future facilities.

Bulletin de la Société Royale des Sciences de Liège (2015) 84, 60-73
The study of the evolution of organic matter subjected to space conditions, and more specifically to solar photons in the vacuum ultraviolet range (120-200 nm) has been undertaken in low Earth Orbit since the 90's, and implemented on various space platforms. The most recent exposure facilities are BIOPAN outside the Russian automatic capsules FOTON, and EXPOSE-E & -R (1&2) outside the International Space Station. They allow the photolysis of many different samples simultaneously, and provide us with valuable data about the formation and evolution of organic matter in the Solar System (meteorites, comets, Titan's atmosphere, the Martian surface...) and in the Interstellar Medium. They have been used by European teams in the recent past(ORGANIC on BIOPAN V-FOTON M2 and UVolution on BIOPAN VI-FOTON M3, PROCESS on EXPOSE-E, AMINO and ORGANICS on EXPOSE-R), and a new EXPOSE set is currently exposed outside the ISS (PSS on EXPOSE-R2). These existing tools are very valuable ; however, they have significant limitations that limit their capabilities and scientific return. One of the most critical issues for current studies is the lack of any in-situ analysis of the evolution of the samples as a function of time. Only two measurements are available for the experiment : one before and one after the exposure. A significant step forward has been achieved with the O/OREOS NASA nanosatellite and the OREOcube ESA project with onboard UV-visible measurements. However, for organic samples, following the evolution of the samples would be more informative and provide greater insight with infrared measurements, which display specific patterns characteristic of major organic functionalities in the mid-infrared range (4000-1000 cm-1).

The study of the evolution of organic matter subjected to space conditions, and more specifically to solar photons in the vacuum ultraviolet range (120-200 nm) has been undertaken in low Earth Orbit since the 90’s, and implemented on various space platforms. The most recent exposure facilities are BIOPAN outside the Russian automatic capsules FOTON, and EXPOSE-E & -R (1&2) outside the International Space Station. They allow the photolysis of many different samples simultaneously, and provide us with valuable data about the formation and evolution of organic matter in the Solar System (meteorites, comets, Titan’s atmosphere, the Martian surface...) and in the Interstellar Medium. They have been used by European teams in the recent past(ORGANIC on BIOPAN V-FOTON M2 and UVolution on BIOPAN VI-FOTON M3, PROCESS on EXPOSE-E, AMINO and ORGANICS on EXPOSE-R), and a new EXPOSE set is currently exposed outside the ISS (PSS on EXPOSE-R2). These existing tools are very valuable ; however, they have significant limitations that limit their capabilities and scientific return. One of the most critical issues for current studies is the lack of any in-situ analysis of the evolution of the samples as a function of time. Only two measurements are available for the experiment : one before and one after the exposure. A significant step forward has been achieved with the O/OREOS NASA nanosatellite and the OREOcube ESA project with onboard UV-visible measurements. However, for organic samples, following the evolution of the samples would be more informative and provide greater insight with infrared measurements, which display specific patterns characteristic of major organic functionalities in the mid-infrared range (4000-1000 cm-1).

Westall Fr., Campbell K. A., Bréhéret J. G., Foucher F., Gautret P., Hubert A., Sorieul S., Grassineau N., Guido D. M.  (2015)

Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context

Geology (2015) 43 (7) 615-618 - doi : 10.1130/g366461
Interacting, diverse microbe-sediment systems exist in natural environments today but have not yet been recognized in the oldest records of life on Earth (older than 3.3 Ga) because of lack of distinctive biomarker molecules and patchy preservation of microbial paleocommunities. In an in-situ outcrop- to microbial-scale study, we have differentiated probable phototrophic, chemolithotrophic, and chemo-organotrophic fossil microbial signatures in a nearshore volcanogenic sedimentary setting in 3.33 Ga rocks of the Josefsdal Chert, Barberton greenstone belt, South Africa, while demonstrating the importance of contemporaneous hydrothermal activity. Hydrothermal fluids, as a nutrient source, strongly controlled the development and distribution of the microbial communities and, as a silicifying agent, contributed to their rapid fossilization. We thus show that intricate microbe-sediment systems are deep-rooted in time and that at least some early life may indeed have been thermophilic.

Interacting, diverse microbe-sediment systems exist in natural environments today but have not yet been recognized in the oldest records of life on Earth (older than 3.3 Ga) because of lack of distinctive biomarker molecules and patchy preservation of microbial paleocommunities. In an in-situ outcrop- to microbial-scale study, we have differentiated probable phototrophic, chemolithotrophic, and chemo-organotrophic fossil microbial signatures in a nearshore volcanogenic sedimentary setting in 3.33 Ga rocks of the Josefsdal Chert, Barberton greenstone belt, South Africa, while demonstrating the importance of contemporaneous hydrothermal activity. Hydrothermal fluids, as a nutrient source, strongly controlled the development and distribution of the microbial communities and, as a silicifying agent, contributed to their rapid fossilization. We thus show that intricate microbe-sediment systems are deep-rooted in time and that at least some early life may indeed have been thermophilic.

Foucher F., Ammar M.-R., Westall F.  (2015)

Revealing the biotic origin of silicified Precambrian carbonaceous microstructures using Raman spectroscopic mapping, a potential method for the detection of microfossils on Mars

Journal of Raman Spectroscopy (2015) First published online : 2015, 14 apr - doi : 10.1002/jrs.4687
Demonstrating the biogenicity of carbonaceous microfossils can be relatively difficult because of their small size and simple shape, and to the degradation of the associated organic molecules with time. For Precambrian fossils, it generally requires the use of several techniques to study the shape and the composition of the structure itself, as well as its mineral environment. The ability to identify both organic matter and minerals using Raman spectroscopy makes it a key technique in the field of micropaleontology. Raman instruments are also being developed for the upcoming missions to Mars, ExoMars and Mars 2020, both dedicated to the search for past or present traces of life. However, demonstrating the biotic origin of carbonaceous matter in geological materials using this technique is controversial. Here, we show that Raman mapping instead of single spot analysis can detect variations in the composition of carbonaceous matter associated with fossilized microbes in the 800-Ma-old microfossils from the Draken Formation, Svalbard. This discovery is of great interest because it permits assessment of the biotic origin of a fossilized carbonaceous structure. Raman mapping could thus be of crucial importance in the near future for detecting potential fossilized microbial remains in Martian rocks.

Demonstrating the biogenicity of carbonaceous microfossils can be relatively difficult because of their small size and simple shape, and to the degradation of the associated organic molecules with time. For Precambrian fossils, it generally requires the use of several techniques to study the shape and the composition of the structure itself, as well as its mineral environment. The ability to identify both organic matter and minerals using Raman spectroscopy makes it a key technique in the field of micropaleontology. Raman instruments are also being developed for the upcoming missions to Mars, ExoMars and Mars 2020, both dedicated to the search for past or present traces of life. However, demonstrating the biotic origin of carbonaceous matter in geological materials using this technique is controversial. Here, we show that Raman mapping instead of single spot analysis can detect variations in the composition of carbonaceous matter associated with fossilized microbes in the 800-Ma-old microfossils from the Draken Formation, Svalbard. This discovery is of great interest because it permits assessment of the biotic origin of a fossilized carbonaceous structure. Raman mapping could thus be of crucial importance in the near future for detecting potential fossilized microbial remains in Martian rocks.

Campbell K. A., Guido D. M., Gautret P., Foucher F., Ramboz C., Westall F.  (2015)

Geyserite in hot-spring siliceous sinter : Window on Earth’s hottest terrestrial (paleo)environment and its extreme life

Earth-Science Reviews (2015) 148 44-64 - doi : 10.1016/j.earscirev.2015.05.009
Siliceous hot-spring deposits, or sinters, typically form in active, terrestrial (on land), volcanic terrains where magmatically heated waters circulating through the shallow crust emerge at the Earth's surface as silica-charged geothermal fluids. Geyserites are sinters affiliated with the highest temperature ( 75–100 °C), natural geothermal fluid emissions, comprising localized, lithologically distinctive, hydrothermal silica precipitates that develop around geysers, spouters and spring-vents. They demarcate the position of hot-fluid upflow zones useful for geothermal energy and epithermal mineral prospecting. Near-vent areas also are “extreme environment” settings for the growth of microbial biofilms at near-boiling temperatures. Microbial biosignatures (e.g., characteristic silicified microbial textures, carbon isotopes, genetic material, lipid biomarkers) may be extracted from modern geyserite. However, because of strong taphonomic filtering and subsequent diagenesis, fossils in geyserite are very rare in the pre-Quaternary sinter record which, in and of itself, is patchy in time and space back to about 400 Ma. Only a few old examples are known, such as geyserite reported from the Devonian Drummond Basin (Australia), Devonian Rhynie cherts (Scotland), and a new example described herein from the spectacularly well-preserved, Late Jurassic (150 Ma), Yellowstone-style geothermal landscapes of Patagonia, Argentina. There, geyserite is associated with fossil vent-mounds and silicified hydrothermal breccias of the Claudia sinter, which is geologically related to the world-class Cerro Vanguardia gold/silver deposit of the Deseado Massif, a part of the Chon Aike siliceous large igneous province. Tubular, filament-like micro-inclusions from Claudia were studied using integrated petrographic and laser micro-Raman analysis, the results of which suggest a biological origin. The putative fossils are enclosed within nodular geyserite, a texture typical of subaerial near-vent conditions. Overall, this worldwide review of geyserite confirms its significance as a mineralizing geological archive reflecting the nature of Earth's highest temperature, habitable terrestrial sedimentary environment. Hot-spring depositional settings also may serve as analogs for early Earth paleoenvironments because of their elevated temperature of formation, rapid mineralization by silica, and morphologically comparable carbonaceous material sourced from prokaryotes adapted to life at high temperatures.

Siliceous hot-spring deposits, or sinters, typically form in active, terrestrial (on land), volcanic terrains where magmatically heated waters circulating through the shallow crust emerge at the Earth’s surface as silica-charged geothermal fluids. Geyserites are sinters affiliated with the highest temperature ( 75–100 °C), natural geothermal fluid emissions, comprising localized, lithologically distinctive, hydrothermal silica precipitates that develop around geysers, spouters and spring-vents. They demarcate the position of hot-fluid upflow zones useful for geothermal energy and epithermal mineral prospecting. Near-vent areas also are “extreme environment” settings for the growth of microbial biofilms at near-boiling temperatures. Microbial biosignatures (e.g., characteristic silicified microbial textures, carbon isotopes, genetic material, lipid biomarkers) may be extracted from modern geyserite. However, because of strong taphonomic filtering and subsequent diagenesis, fossils in geyserite are very rare in the pre-Quaternary sinter record which, in and of itself, is patchy in time and space back to about 400 Ma. Only a few old examples are known, such as geyserite reported from the Devonian Drummond Basin (Australia), Devonian Rhynie cherts (Scotland), and a new example described herein from the spectacularly well-preserved, Late Jurassic (150 Ma), Yellowstone-style geothermal landscapes of Patagonia, Argentina. There, geyserite is associated with fossil vent-mounds and silicified hydrothermal breccias of the Claudia sinter, which is geologically related to the world-class Cerro Vanguardia gold/silver deposit of the Deseado Massif, a part of the Chon Aike siliceous large igneous province. Tubular, filament-like micro-inclusions from Claudia were studied using integrated petrographic and laser micro-Raman analysis, the results of which suggest a biological origin. The putative fossils are enclosed within nodular geyserite, a texture typical of subaerial near-vent conditions. Overall, this worldwide review of geyserite confirms its significance as a mineralizing geological archive reflecting the nature of Earth’s highest temperature, habitable terrestrial sedimentary environment. Hot-spring depositional settings also may serve as analogs for early Earth paleoenvironments because of their elevated temperature of formation, rapid mineralization by silica, and morphologically comparable carbonaceous material sourced from prokaryotes adapted to life at high temperatures.

Bost N., Ramboz C., Le Breton N., Foucher F., Lopez-Reyes G., De Angelis S., Josset M., Venegas G., Sanz-Arranz A., Rull F., Medina J., Josset J. L., Souchon A., Ammannito E., De Sanctis M. C., Di Iorio T., Carli C., Vago J. L., Westall F.  (2015)

Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars

Planetary and Space Science (2015) 108 87-97 - doi : 10.1016/j.pss.2015.01.006
The future ExoMars rover mission (ESA/Roscosmos), to be launched in 2018, will investigate the habitability of the Martian surface and near subsurface, and search for traces of past life in the form of textural biosignatures and organic molecules. In support of this mission, a selection of relevant Mars analogue materials has been characterised and stored in the International Space Analogue Rockstore (ISAR), hosted in Orléans, France. Two ISAR samples were analysed by prototypes of the ExoMars rover instruments used for petrographic study. The objective was to determine whether a full interpretation of the rocks could be achieved on the basis of the data obtained by the ExoMars visible-IR imager and spectrometer (MicrOmega), the close-up imager (CLUPI), the drill infrared spectrometer (Ma_Miss) and the Raman spectrometer (RLS), first separately then in their entirety. In order to not influence the initial instrumental interpretation, the samples were sent to the different teams without any additional information. This first step was called the “Blind Test” phase. The data obtained by the instruments were then complemented with photography of the relevant outcrops (as would be available during the ExoMars mission) before being presented to two geologists tasked with the interpretation. The context data and photography of the outcrops and of the samples were sufficient for the geologists to identify the rocks. This initial identification was crucial for the subsequent, iterative interpretation of the spectroscopic data. The data from the different spectrometers was, thus, cross-calibrated against the photographic interpretations and against each other. In this way, important mineralogical details, such as evidence of aqueous alteration of the rocks, provided relevant information concerning potential habitable conditions. The final conclusion from this test is that, when processed together, the ExoMars payload instruments produce complementary data allowing reliable interpretation of the geological context and potential for habitable environments. This background information is fundamental for the analysis and interpretation of organics in the processed Martian rocks.

The future ExoMars rover mission (ESA/Roscosmos), to be launched in 2018, will investigate the habitability of the Martian surface and near subsurface, and search for traces of past life in the form of textural biosignatures and organic molecules. In support of this mission, a selection of relevant Mars analogue materials has been characterised and stored in the International Space Analogue Rockstore (ISAR), hosted in Orléans, France. Two ISAR samples were analysed by prototypes of the ExoMars rover instruments used for petrographic study. The objective was to determine whether a full interpretation of the rocks could be achieved on the basis of the data obtained by the ExoMars visible-IR imager and spectrometer (MicrOmega), the close-up imager (CLUPI), the drill infrared spectrometer (Ma_Miss) and the Raman spectrometer (RLS), first separately then in their entirety. In order to not influence the initial instrumental interpretation, the samples were sent to the different teams without any additional information. This first step was called the “Blind Test” phase. The data obtained by the instruments were then complemented with photography of the relevant outcrops (as would be available during the ExoMars mission) before being presented to two geologists tasked with the interpretation. The context data and photography of the outcrops and of the samples were sufficient for the geologists to identify the rocks. This initial identification was crucial for the subsequent, iterative interpretation of the spectroscopic data. The data from the different spectrometers was, thus, cross-calibrated against the photographic interpretations and against each other. In this way, important mineralogical details, such as evidence of aqueous alteration of the rocks, provided relevant information concerning potential habitable conditions. The final conclusion from this test is that, when processed together, the ExoMars payload instruments produce complementary data allowing reliable interpretation of the geological context and potential for habitable environments. This background information is fundamental for the analysis and interpretation of organics in the processed Martian rocks.

Bertrand, M., Chabin, A., Colas, C., Cadène, M., Chaput, D., Brack, A., Cottin, H. and Westall,F.  (2015)

The AMINO experiment : exposure of amino acids in the EXPOSE-R experiment on the International Space Station and in laboratory

International Journal of Astrobiology (2015) 14 (1) 89-97 - doi : 10.1017/S1473550414000354
In order to confirm the results of previous experiments concerning the chemical behaviour of organic molecules in the space environment, organic molecules (amino acids and a dipeptide) in pure form and embedded in meteorite powder were exposed in the AMINO experiment in the EXPOSE-R facility onboard the International Space Station. After exposure to space conditions for 24 months (2843 h of irradiation), the samples were returned to the Earth and analysed in the laboratory for reactions caused by solar ultraviolet (UV) and other electromagnetic radiation. Laboratory UV exposure was carried out in parallel in the Cologne DLR Center (Deutsches Zentrum für Luft und Raumfahrt). The molecules were extracted from the sample holder and then (1) derivatized by silylation and analysed by gas chromatography coupled to a mass spectrometer (GC–MS) in order to quantify the rate of degradation of the compounds and (2) analysed by high-resolution mass spectrometry (HRMS) in order to understand the chemical reactions that occurred. The GC–MS results confirm that resistance to irradiation is a function of the chemical nature of the exposed molecules and of the wavelengths of the UV light. They also confirm the protective effect of a coating of meteorite powder. The most altered compounds were the dipeptides and aspartic acid while the most robust were compounds with a hydrocarbon chain. The MS analyses document the products of reactions, such as decarboxylation and decarbonylation of aspartic acid, taking place after UV exposure. Given the universality of chemistry in space, our results have a broader implication for the fate of organic molecules that seeded the planets as soon as they became habitable as well as for the effects of UV radiation on exposed molecules at the surface of Mars, for example.

In order to confirm the results of previous experiments concerning the chemical behaviour of organic molecules in the space environment, organic molecules (amino acids and a dipeptide) in pure form and embedded in meteorite powder were exposed in the AMINO experiment in the EXPOSE-R facility onboard the International Space Station. After exposure to space conditions for 24 months (2843 h of irradiation), the samples were returned to the Earth and analysed in the laboratory for reactions caused by solar ultraviolet (UV) and other electromagnetic radiation. Laboratory UV exposure was carried out in parallel in the Cologne DLR Center (Deutsches Zentrum für Luft und Raumfahrt). The molecules were extracted from the sample holder and then (1) derivatized by silylation and analysed by gas chromatography coupled to a mass spectrometer (GC–MS) in order to quantify the rate of degradation of the compounds and (2) analysed by high-resolution mass spectrometry (HRMS) in order to understand the chemical reactions that occurred. The GC–MS results confirm that resistance to irradiation is a function of the chemical nature of the exposed molecules and of the wavelengths of the UV light. They also confirm the protective effect of a coating of meteorite powder. The most altered compounds were the dipeptides and aspartic acid while the most robust were compounds with a hydrocarbon chain. The MS analyses document the products of reactions, such as decarboxylation and decarbonylation of aspartic acid, taking place after UV exposure. Given the universality of chemistry in space, our results have a broader implication for the fate of organic molecules that seeded the planets as soon as they became habitable as well as for the effects of UV radiation on exposed molecules at the surface of Mars, for example.


2014   Références trouvées : 4

Cady, L.P., Brack, A., Bueno Prieto, J.E., Cockell, C., Horneck, G., Kasting, J.F., Lineweaver, C.H., Raulin, F., Schopf, J.W., Sleep, N., von Bloh, W., Westall, F., Deamer, D., Lehman, N., Perez-Mercader, J.  (2014)

Where do we go from here ? Astrobiology editorial board opinions

Astrobiology (2014) 14 (8) 629-644 - doi : 10.1089/ast.2014.1405

Orange, F., Dupont, S., Goff, O., Le Bienvenu, N., Disnar, J.-R., Westall, F. and Le Romancer, M.  (2014)

Experimental fossilization of the Thermophilic Gram-positive Bacterium Geobacillus SP7A : A Long Duration Preservation Study

Geomicrobiology Journal (2014) 31 (7) 578-589 - doi : 10.1080/01490451.2013.860208
Recent experiments to fossilize microorganisms using silica have shown that the fossilization process is far more complex than originally thought ; microorganisms not only play an active role in silica precipitation but may also remain alive while silica is precipitating on their cell wall. To better understand the mechanisms that lead to the preservation of fossilized microbes in recent and ancient rocks, we experimentally silicified a Gram-positive bacterium, Geobacillus SP7A, over a period of five years. The microbial response to experimental fossilization was monitored with the use of LIVE/DEAD staining to assess the structural integrity of the cells during fossilization. It documented the crucial role of silicification on the preservation of the cells and of their structural integrity after several years. Electron microscopy observations showed that initial fossilization of Gram-positive bacteria was extremely rapid, thus allowing very good preservation of Geobacillus SP7A cells. A thick layer of silica was deposited on the outer surface of cell walls in the earliest phase of silicification before invading the cytoplasmic space. Eventually, the cell wall was the only recognizable feature. Heavily mineralized cells thus showed morphological similarities with natural microfossils found in the rock record.

Recent experiments to fossilize microorganisms using silica have shown that the fossilization process is far more complex than originally thought ; microorganisms not only play an active role in silica precipitation but may also remain alive while silica is precipitating on their cell wall. To better understand the mechanisms that lead to the preservation of fossilized microbes in recent and ancient rocks, we experimentally silicified a Gram-positive bacterium, Geobacillus SP7A, over a period of five years. The microbial response to experimental fossilization was monitored with the use of LIVE/DEAD staining to assess the structural integrity of the cells during fossilization. It documented the crucial role of silicification on the preservation of the cells and of their structural integrity after several years. Electron microscopy observations showed that initial fossilization of Gram-positive bacteria was extremely rapid, thus allowing very good preservation of Geobacillus SP7A cells. A thick layer of silica was deposited on the outer surface of cell walls in the earliest phase of silicification before invading the cytoplasmic space. Eventually, the cell wall was the only recognizable feature. Heavily mineralized cells thus showed morphological similarities with natural microfossils found in the rock record.

Kminek, G. C. et al ..... Westall, F.  (2014)

Report of the workshop for life detection in samples from Mars.

Life Sciences in Space Research (2014) 2 1-5 - doi : 10.1016/j.lssr.2014.05.001
The question of whether there is or was life on Mars has been one of the most pivotal since Schiaparellis' telescopic observations of the red planet. With the advent of the space age, this question can be addressed directly by exploring the surface of Mars and by bringing samples to Earth for analysis. The latter, however, is not free of problems. Life can be found virtually everywhere on Earth. Hence the potential for contaminating the Mars samples and compromising their scientific integrity is not negligible. Conversely, if life is present in samples from Mars, this may represent a potential source of extraterrestrial biological contamination for Earth. A range of measures and policies, collectively termed ‘planetary protection’, are employed to minimise risks and thereby prevent undesirable consequences for the terrestrial biosphere. This report documents discussions and conclusions from a workshop held in 2012, which followed a public conference focused on current capabilities for performing life-detection studies on Mars samples. The workshop focused on the evaluation of Mars samples that would maximise scientific productivity and inform decision making in the context of planetary protection. Workshop participants developed a strong consensus that the same measurements could be employed to effectively inform both science and planetary protection, when applied in the context of two competing hypotheses : 1) that there is no detectable life in the samples ; or 2) that there is martian life in the samples. Participants then outlined a sequence for sample processing and defined analytical methods that would test these hypotheses. They also identified critical developments to enable the analysis of samples from Mars.

The question of whether there is or was life on Mars has been one of the most pivotal since Schiaparellis’ telescopic observations of the red planet. With the advent of the space age, this question can be addressed directly by exploring the surface of Mars and by bringing samples to Earth for analysis. The latter, however, is not free of problems. Life can be found virtually everywhere on Earth. Hence the potential for contaminating the Mars samples and compromising their scientific integrity is not negligible. Conversely, if life is present in samples from Mars, this may represent a potential source of extraterrestrial biological contamination for Earth. A range of measures and policies, collectively termed ‘planetary protection’, are employed to minimise risks and thereby prevent undesirable consequences for the terrestrial biosphere. This report documents discussions and conclusions from a workshop held in 2012, which followed a public conference focused on current capabilities for performing life-detection studies on Mars samples. The workshop focused on the evaluation of Mars samples that would maximise scientific productivity and inform decision making in the context of planetary protection. Workshop participants developed a strong consensus that the same measurements could be employed to effectively inform both science and planetary protection, when applied in the context of two competing hypotheses : 1) that there is no detectable life in the samples ; or 2) that there is martian life in the samples. Participants then outlined a sequence for sample processing and defined analytical methods that would test these hypotheses. They also identified critical developments to enable the analysis of samples from Mars.

Moczydlowska, M. Westall, F. Foucher, F.  (2014)

Microstructure and biogeochemistry of the organically preserved Ediacaran Metazoan Sabellidites

Journal of Paleontology. 88 (2) 224-239 - doi : 10.1666/13-003
Metazoans (multicellular animals) evolved during the Ediacaran Period as shown by the record of their imprints, carbonaceous compressions, trace fossils, and organic bodies and skeletal fossils. Initial evolutionary experiments produced unusual bodies that are poorly understood or conceived of as non-metazoan. It is accepted that sponges, ctenophorans, cnidarians, placozoans, and bilaterians were members of the Ediacaran fauna, many of which have uncertain affinities. The fossil Sabellidites cambriensis Yanishevsky, 1926, derived from the terminal Ediacaran strata, is the earliest known organically preserved animal that belonged to a newly evolving fauna, which replaced the Ediacara-type metazoans. Morphologically simple soft-bodied tubular fossils, such as S. cambriensis, and biomineralized, as contemporaneous Sinotubulites sp., are not easy to recognize phylogenetically because many unrelated organisms developed encasing tubes independently. Therefore, in addition to morphologic information, evidence derived from the microstructure of the organic wall and its biochemistry may be vital to resolving fossil origins and phylogenetic relationships. Here we present morphological, microstructural and biogeochemical studies on S. cambriensis using various microscopic and spectroscopic techniques, which provide new evidence that supports its siboglinid, annelidan affinity. The late Ediacaran age of Sabellidites fossil constrains the minimum age of siboglinids and the timing of the divergence of including them annelids by fossil record and this could be tested using molecular clock estimates. The fine microstructure of the organic tube in Sabellidites is multi-layered and has discrete layers composed of differently orientated and perfectly shaped fibers embedded in an amorphous matrix. The highly ordered and specific pattern of fiber alignment (i.e., the texture of organic matter) is similar to that of representatives of the family Siboglinidae. The biogeochemistry of the organic matter that comprised the tube, which was inferred from its properties, composition, and microstructure, is consistent with chitin and proteins as in siboglinids.

Metazoans (multicellular animals) evolved during the Ediacaran Period as shown by the record of their imprints, carbonaceous compressions, trace fossils, and organic bodies and skeletal fossils. Initial evolutionary experiments produced unusual bodies that are poorly understood or conceived of as non-metazoan. It is accepted that sponges, ctenophorans, cnidarians, placozoans, and bilaterians were members of the Ediacaran fauna, many of which have uncertain affinities. The fossil Sabellidites cambriensis Yanishevsky, 1926, derived from the terminal Ediacaran strata, is the earliest known organically preserved animal that belonged to a newly evolving fauna, which replaced the Ediacara-type metazoans. Morphologically simple soft-bodied tubular fossils, such as S. cambriensis, and biomineralized, as contemporaneous Sinotubulites sp., are not easy to recognize phylogenetically because many unrelated organisms developed encasing tubes independently. Therefore, in addition to morphologic information, evidence derived from the microstructure of the organic wall and its biochemistry may be vital to resolving fossil origins and phylogenetic relationships. Here we present morphological, microstructural and biogeochemical studies on S. cambriensis using various microscopic and spectroscopic techniques, which provide new evidence that supports its siboglinid, annelidan affinity. The late Ediacaran age of Sabellidites fossil constrains the minimum age of siboglinids and the timing of the divergence of including them annelids by fossil record and this could be tested using molecular clock estimates. The fine microstructure of the organic tube in Sabellidites is multi-layered and has discrete layers composed of differently orientated and perfectly shaped fibers embedded in an amorphous matrix. The highly ordered and specific pattern of fiber alignment (i.e., the texture of organic matter) is similar to that of representatives of the family Siboglinidae. The biogeochemistry of the organic matter that comprised the tube, which was inferred from its properties, composition, and microstructure, is consistent with chitin and proteins as in siboglinids.


2013   Références trouvées : 7

Lopez-Reyes G., Rull F., Venegas G., Westall F., Foucher F. Bost N., Sanz A., Catalá-Espí A., Vegas A., Hermosilla I., Sansano A. and Medina J.  (2013)

Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer instrument

European Journal of Mineralogy (2013) 25 (5) 721-722 - doi : 10.1127/0935-1221/2013/0025-2317
The Raman Laser Spectrometer (RLS) is part of the payload of the 2018 ExoMars rover. The Sample Preparation and Distribution System (SPDS) of the rover will crush samples acquired from down to two meters depth under the Martian surface, and provide them to the RLS instrument in the form of flattened powdered samples. The RLS instrument will acquire a minimum of 20 points on the flattened surface of the samples. To be able to obtain the maximum scientific return from the instrument once on Mars, a simulator of the SPDS system has been built to perform a series of experiments in a representative scenario. The crushing process implies the loss of rock structure and texture and, hence, the geological context of the samples. However, qualitative analysis with the RLS simulator on powdered natural samples and rocks showed that the RLS is capable of detecting carbonaceous material occurring in trace amounts in one of the rock samples (a silicified volcanic sand), more easily than with the same analysis on bulk. Furthermore, it is shown that minor phases in carbonate cements that cannot be detected by Raman in the bulk sample can be detected in the powder, thus allowing the identification of all the carbonate phases present in the cement crust. 

In order to quantify the detection threshold of the instrument, further analysis on controlled samples were performed. The results with the RLS SPDS simulator showed that the instrument can reach detection thresholds down to 1 % on powdered samples. Furthermore, analysis of controlled mixtures showed that performing a very simple intensity-based statistical analysis of the spectra can provide semi-quantification of the abundance of the mineral species with quite linear calibration curves.

The Raman Laser Spectrometer (RLS) is part of the payload of the 2018 ExoMars rover. The Sample Preparation and Distribution System (SPDS) of the rover will crush samples acquired from down to two meters depth under the Martian surface, and provide them to the RLS instrument in the form of flattened powdered samples. The RLS instrument will acquire a minimum of 20 points on the flattened surface of the samples. To be able to obtain the maximum scientific return from the instrument once on Mars, a simulator of the SPDS system has been built to perform a series of experiments in a representative scenario. The crushing process implies the loss of rock structure and texture and, hence, the geological context of the samples. However, qualitative analysis with the RLS simulator on powdered natural samples and rocks showed that the RLS is capable of detecting carbonaceous material occurring in trace amounts in one of the rock samples (a silicified volcanic sand), more easily than with the same analysis on bulk. Furthermore, it is shown that minor phases in carbonate cements that cannot be detected by Raman in the bulk sample can be detected in the powder, thus allowing the identification of all the carbonate phases present in the cement crust.

In order to quantify the detection threshold of the instrument, further analysis on controlled samples were performed. The results with the RLS SPDS simulator showed that the instrument can reach detection thresholds down to 1 % on powdered samples. Furthermore, analysis of controlled mixtures showed that performing a very simple intensity-based statistical analysis of the spectra can provide semi-quantification of the abundance of the mineral species with quite linear calibration curves.

Westall, F., Loizeau, D., Foucher, F., Bost, N., Betrand, M., Vago, J. and Kminek, G.  (2013)

Habitability on Mars from a microbial point of view

Astrobiology 13 (9) 887-897
Abstract Extraterrestrial habitability is a complex notion. We briefly review what is known about the origin of life on Earth, that is, life based on carbon chemistry and water. We then discuss habitable conditions (past and present) for established life and for the survival of microorganisms. Based on these elements, we propose to use the term habitable only for conditions necessary for the origin of life, the proliferation of life, and the survival of life. Not covered by this term would be conditions necessary for prebiotic chemistry and conditions that would allow the recognition of extinct or hibernating life. Finally, we apply this concept to the potential emergence of life on Mars where suitable conditions for life to start, proliferate, and survive have been heterogeneous throughout its history. These considerations have a profound impact on the nature and distribution of eventual traces of martian life, or any precursor, and must therefore inform our search-for-life strategies.

Abstract Extraterrestrial habitability is a complex notion. We briefly review what is known about the origin of life on Earth, that is, life based on carbon chemistry and water. We then discuss habitable conditions (past and present) for established life and for the survival of microorganisms. Based on these elements, we propose to use the term habitable only for conditions necessary for the origin of life, the proliferation of life, and the survival of life. Not covered by this term would be conditions necessary for prebiotic chemistry and conditions that would allow the recognition of extinct or hibernating life. Finally, we apply this concept to the potential emergence of life on Mars where suitable conditions for life to start, proliferate, and survive have been heterogeneous throughout its history. These considerations have a profound impact on the nature and distribution of eventual traces of martian life, or any precursor, and must therefore inform our search-for-life strategies.

Bost N., Westall F., Ramboz C., Foucher F., Pullan D., Meunier A., Petit S., Fleischer I., Klingelhöfer G., Vago J.L.  (2013)

Missions to Mars : Characterisation of Mars analogue rocks for the International Space Analogue Rockstore (ISAR)

Planetary and Space Science. 82-83, 113-127
Instruments for surface missions to extraterrestrial bodies should be cross-calibrated using a common suite of relevant materials. Such work is necessary to improve instrument performance and aids in the interpretation of in-situ measurements. At the CNRS campus in Orléans, the Observatoire des Sciences de l'Univers en région Centre (OSUC) has created a collection of well-characterised rocks and minerals for testing and calibrating instruments to be flown in space missions. The characteristics of the analogue materials are documented in an accompanying online database. In view of the recent and upcoming rover missions to Mars (NASA's 2011 Mars Science Laboratory (MSL) and ESA/Roscosmos' 2018 ExoMars), we are concentrating initially on materials of direct relevance to the red planet. The initial collection consists of 15 well-studied rock and mineral samples, including a variety of basalts (ultramafic, weathered, silicified, primitive), sediments (volcanic sands, chert, and a banded iron formation –BIF-), and the phyllosilicate nontronite (a clay). All the samples were characterised petrographically, petrologically, and geochemically using the types of analyses likely to be performed during in-situ missions, in particular ExoMars : hand specimen description ; optical microscopy ; mineralogical analysis by XRD, Raman and IR spectrometry ; iron phase analysis by Mössbauer spectroscopy (MBS), elemental analysis by Energy-Dispersive X-ray spectroscopy (EDX), microprobe, Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and Mass Spectrometry (ICP-MS) ; and reduced carbon analysis by Raman spectrometry.

Instruments for surface missions to extraterrestrial bodies should be cross-calibrated using a common suite of relevant materials. Such work is necessary to improve instrument performance and aids in the interpretation of in-situ measurements. At the CNRS campus in Orléans, the Observatoire des Sciences de l’Univers en région Centre (OSUC) has created a collection of well-characterised rocks and minerals for testing and calibrating instruments to be flown in space missions. The characteristics of the analogue materials are documented in an accompanying online database. In view of the recent and upcoming rover missions to Mars (NASA’s 2011 Mars Science Laboratory (MSL) and ESA/Roscosmos’ 2018 ExoMars), we are concentrating initially on materials of direct relevance to the red planet. The initial collection consists of 15 well-studied rock and mineral samples, including a variety of basalts (ultramafic, weathered, silicified, primitive), sediments (volcanic sands, chert, and a banded iron formation –BIF-), and the phyllosilicate nontronite (a clay). All the samples were characterised petrographically, petrologically, and geochemically using the types of analyses likely to be performed during in-situ missions, in particular ExoMars : hand specimen description ; optical microscopy ; mineralogical analysis by XRD, Raman and IR spectrometry ; iron phase analysis by Mössbauer spectroscopy (MBS), elemental analysis by Energy-Dispersive X-ray spectroscopy (EDX), microprobe, Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) and Mass Spectrometry (ICP-MS) ; and reduced carbon analysis by Raman spectrometry.

Foucher F.,Lopez-Reyes G., Bost N., Rull-Perez F., Rüßmann P. and Westall F.  (2013)

Effect of grain size distribution on Raman analyses and the consequences for in situ planetary missions.

J. Raman Spectrosc. 443 (6) 916–925
Raman spectroscopy can be used for analysing both mineral and organic phases, thus allowing characterisation of the microbial-scale geological context as well as the search for possible traces of life. This method is therefore very useful for in situ planetary exploration missions. Compared with the myriad of sample preparation techniques available in terrestrial laboratories, the possibilities for sample preparation during in situ missions on other planetary bodies are extremely limited and are generally restricted to abrasion of rock surfaces or crushing of the target samples. Whereas certain techniques need samples to be prepared in powder form, such as X-ray diffraction, this kind of preparation is not particularly suitable for optical microscopy and/or Raman spectroscopy. In this contribution, we examine the effects of powdering rock and mineral samples on optical observations and Raman analyses. We used a commercial Raman spectrometer, as well as a Raman laser spectrometer that simulates the instrument being developed for the future ExoMars 2018 mission. The commercial Raman spectrometer documents significant modifications to the spectra of the powdered samples, including broadening of the peaks and shifts in their position, as well as the appearance of new peaks. These effects are caused by localised heating of the sample under the laser beam and amplification of nominal surface effects due to the increase in surface area in finer grain sizes. However, most changes observed in the Raman spectra using the Raman laser spectrometer system are negligible because the relatively large (50 µm diameter) laser spot size produces lower irradiance. Furthermore, minor phases were more easily detectable in the powdered samples. Most importantly, however, this sample preparation method results in the loss of the textural features and context, making identification of potential fossilized microbial remains more problematic.

Raman spectroscopy can be used for analysing both mineral and organic phases, thus allowing characterisation of the microbial-scale geological context as well as the search for possible traces of life. This method is therefore very useful for in situ planetary exploration missions. Compared with the myriad of sample preparation techniques available in terrestrial laboratories, the possibilities for sample preparation during in situ missions on other planetary bodies are extremely limited and are generally restricted to abrasion of rock surfaces or crushing of the target samples. Whereas certain techniques need samples to be prepared in powder form, such as X-ray diffraction, this kind of preparation is not particularly suitable for optical microscopy and/or Raman spectroscopy. In this contribution, we examine the effects of powdering rock and mineral samples on optical observations and Raman analyses. We used a commercial Raman spectrometer, as well as a Raman laser spectrometer that simulates the instrument being developed for the future ExoMars 2018 mission. The commercial Raman spectrometer documents significant modifications to the spectra of the powdered samples, including broadening of the peaks and shifts in their position, as well as the appearance of new peaks. These effects are caused by localised heating of the sample under the laser beam and amplification of nominal surface effects due to the increase in surface area in finer grain sizes. However, most changes observed in the Raman spectra using the Raman laser spectrometer system are negligible because the relatively large (50 µm diameter) laser spot size produces lower irradiance. Furthermore, minor phases were more easily detectable in the powdered samples. Most importantly, however, this sample preparation method results in the loss of the textural features and context, making identification of potential fossilized microbial remains more problematic.

Bourbin M., Gourier D., Derenne S., Binet L., Le Du Y., Westall F., Kremer B., and Gautre P.  (2013)

Dating Carbonaceous Matter in Archean Cherts by Electron Paramagnetic Resonance

Astrobiology 13 (2) 151-162
Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied ; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example).

Ancient geological materials are likely to be contaminated through geological times. Thus, establishing the syngeneity of the organic matter embedded in a mineral matrix is a crucial step in the study of very ancient rocks. This is particularly the case for Archean siliceous sedimentary rocks (cherts), which record the earliest traces of life. We used electron paramagnetic resonance (EPR) for assessing the syngeneity of organic matter in cherts that have a metamorphic grade no higher than greenschist. A correlation between the age of Precambrian samples and the shape of their EPR signal was established and statistically tested. As thermal treatments impact organic matter maturity, the effect of temperature on this syngeneity proxy was studied ; cyanobacteria were submitted to cumulative short thermal treatment at high temperatures followed by an analysis of their EPR parameters. The resulting carbonaceous matter showed an evolution similar to that of a thermally treated young chert. Furthermore, the possible effect of metamorphism, which is a longer thermal event at lower temperatures, was ruled out for cherts older than 2 Gyr, based on the study of Silurian cherts of the same age and same precursors but various metamorphic grades. We determined that even the most metamorphosed sample did not exhibit the lineshape of an Archean sample. In the hope of detecting organic contamination in Archean cherts, a "contamination-like" mixture was prepared and studied by EPR. It resulted that the lineshape analysis alone does not allow contamination detection and that it must be performed along with cumulative thermal treatments. Such treatments were applied to three Archean chert samples, making dating of their carbonaceous matter possible. We concluded that EPR is a powerful tool to study primitive organic matter and could be used in further exobiology studies on low-metamorphic grade samples (from Mars for example).

Lacerda, S., Bonnet, C.S., Pallier, A., Villette, S., Foucher, F., Westall, F., Buron, F., Suzenet, F., Pichon, C., Petoud, S. and Tóth, E.  (2013)

Lanthanide-Based, Near-Infrared Luminescent and Magnetic Lipoparticles : Monitoring Particle Integrity

Small (2013) 9 (16) 2662-2666 - doi : 10.1002/smll.201201923
Near-infrared emitting, magnetic particles for combined optical and MR detection based on liposomes or artificial lipoproteins are presented. They provide a novel strategy for the luminescence sensitization of lanthanide cations (Yb3+, Nd3+) without covalent bonds between the chromophore and the lanthanide, and provide an unambiguous tool for monitoring the integrity of the liponanoparticles, via emission in the NIR region.

Near-infrared emitting, magnetic particles for combined optical and MR detection based on liposomes or artificial lipoproteins are presented. They provide a novel strategy for the luminescence sensitization of lanthanide cations (Yb3+, Nd3+) without covalent bonds between the chromophore and the lanthanide, and provide an unambiguous tool for monitoring the integrity of the liponanoparticles, via emission in the NIR region.

Foucher, F. and Westall, F.  (2013)

Raman Imaging of Metastable Opal in Carbonaceous Microfossils of the 700–800Ma Old Draken Formation

Astrobiology 13 (1) 57-67
Opaline silica was detected, with Raman spectroscopy, in carbonaceous microfossils (especially Myxococcoides) in silicified filamentous microbial mats within dolomitized conglomerates of the Draken Formation (- 800 to - 700 Ma). High-resolution electron microscopy (HRTEM) and microprobe analyses were used to confirm the nature of this phase in the quartz matrix of the microbial mats. The silica likely precipitated in a icrocrystalline form onto the organic macromolecules around, and within, the degrading microorganisms and preserved them by inhibiting the natural phase change to quartz. The Raman signal of opaline silica associated with carbonaceous matter and other iosignatures could be a potential indicator of biogenicity. This kind of association could be very useful during the future ExoMars mission (ESA/Roscosmos, 2018) that will earch for traces of past life on Mars.

Opaline silica was detected, with Raman spectroscopy, in carbonaceous microfossils (especially Myxococcoides) in silicified filamentous microbial mats within dolomitized conglomerates of the Draken Formation (- 800 to - 700 Ma). High-resolution electron microscopy (HRTEM) and microprobe analyses were used to confirm the nature of this phase in the quartz matrix of the microbial mats. The silica likely precipitated in a icrocrystalline form onto the organic macromolecules around, and within, the degrading microorganisms and preserved them by inhibiting the natural phase change to quartz. The Raman signal of opaline silica associated with carbonaceous matter and other iosignatures could be a potential indicator of biogenicity. This kind of association could be very useful during the future ExoMars mission (ESA/Roscosmos, 2018) that will earch for traces of past life on Mars.


2012   Références trouvées : 9

Westall, F., Anbar, A., Fischer, W., Kump, L.  (2012)

The great oxidation event : an expert discussion on the causes, the processes, and the still unknowns. Interview by Frances Westall.

Astrobiology (2012à 12 (12) 1157-1162 - doi : 10.1089/ast.2012.1110

Bertrand J.C., Brochier C., Gouy M. and Westall F.  (2012)

Pendant trois milliards d’années les microorganismes sont les seuls habitants de la Terre

In "Ecologie microbienne - Microbiologie des milieux naturels et anthropisés" - Eds Betrand J.C. et al - 81-113
Cet ouvrage, co-écrit par Jean-Claude BERTRAND (Université de la Méditerranée, Marseille), Pierre CAUMETTE (Université de Pau), Philippe LEBARON (Université Pierre et Marie Curie, Banyuls/Mer), Robert MATHERON (Université Paul Cezanne , Marseille) et Philippe NORMAND (Université Claude Bernard, Lyon), est un traité d'écologie microbienne dont l'objectif est l'étude des micro-organismes dans les milieux naturels et anthropisés. Le « compartiment microbien », qui est une composante des écosystèmes, regroupe les procaryotes et eucaryotes unicellulaires ; les virus sont également objet d'étude dans la mesure où ils sont impliqués dans des problématiques écologiques et environnementales. 

L'ouvrage, qui n'a pas d'équivalent en langue française, s'adresse prioritairement aux étudiants des licences et des masters scientifiques et professionnels, et aux doctorants. Il est également très utile aux chercheurs et aux enseignants-chercheurs, en particulier les microbiologistes et les écologues, qui souhaitent approfondir leur connaissance de la microbiologie des milieux naturels.

Cet ouvrage, co-écrit par Jean-Claude BERTRAND (Université de la Méditerranée, Marseille), Pierre CAUMETTE (Université de Pau), Philippe LEBARON (Université Pierre et Marie Curie, Banyuls/Mer), Robert MATHERON (Université Paul Cezanne , Marseille) et Philippe NORMAND (Université Claude Bernard, Lyon), est un traité d’écologie microbienne dont l’objectif est l’étude des micro-organismes dans les milieux naturels et anthropisés. Le « compartiment microbien », qui est une composante des écosystèmes, regroupe les procaryotes et eucaryotes unicellulaires ; les virus sont également objet d’étude dans la mesure où ils sont impliqués dans des problématiques écologiques et environnementales.

L’ouvrage, qui n’a pas d’équivalent en langue française, s’adresse prioritairement aux étudiants des licences et des masters scientifiques et professionnels, et aux doctorants. Il est également très utile aux chercheurs et aux enseignants-chercheurs, en particulier les microbiologistes et les écologues, qui souhaitent approfondir leur connaissance de la microbiologie des milieux naturels.

Orange F., Disnar J.R., Gautret P., Westall F., Bienvenu N., Lottier N. and Prieur D.  (2012)

Preservation and evolution of organic matter during experimental fossilisation of the hyperthermophilic archaea Methanocaldococcus jannaschii

Orig Life Evol Biosph. 42 (6) 587-609
Identification of the earliest traces of life is made difficult by the scarcity of the preserved microbial remains and by the alteration and potential contamination of the organic matter (OM) content of rocks. These factors can confuse interpretations of the biogenicity and syngenicity of fossilised structures and organic molecules found in ancient rocks. In order to improve our knowledge of the fossilisation processes and their effects at the molecular level, we made a preliminary study of the fate of OM during experimental fossilisation. Changes in the composition and quantity of amino acids, monosaccharides and fatty acids were followed with HPLC, GC and GC-MS analyses during 1 year of silicification of the hyperthermophilic Archaea Methanocaldococcus jannaschii. Although the cells themselves did not fossilise and the accompanying extracellular polymeric substances (EPS) did, our analyses showed that the OM initially present in both cells and EPS was uniformly preserved in the precipitated silica, with amino acids and fatty acids being the best preserved compounds. This study thus completes previous data obtained by electron microscopy investigations of simulated microbial fossilisation and can help better identification and interpretation of microbial biosignatures in both ancient rocks and in recent hydrothermal formations and sediments.

Identification of the earliest traces of life is made difficult by the scarcity of the preserved microbial remains and by the alteration and potential contamination of the organic matter (OM) content of rocks. These factors can confuse interpretations of the biogenicity and syngenicity of fossilised structures and organic molecules found in ancient rocks. In order to improve our knowledge of the fossilisation processes and their effects at the molecular level, we made a preliminary study of the fate of OM during experimental fossilisation. Changes in the composition and quantity of amino acids, monosaccharides and fatty acids were followed with HPLC, GC and GC-MS analyses during 1 year of silicification of the hyperthermophilic Archaea Methanocaldococcus jannaschii. Although the cells themselves did not fossilise and the accompanying extracellular polymeric substances (EPS) did, our analyses showed that the OM initially present in both cells and EPS was uniformly preserved in the precipitated silica, with amino acids and fatty acids being the best preserved compounds. This study thus completes previous data obtained by electron microscopy investigations of simulated microbial fossilisation and can help better identification and interpretation of microbial biosignatures in both ancient rocks and in recent hydrothermal formations and sediments.

Bourbin M., Derenne S., Gourier D., Rouzaud J.N., Gautret P. and Westall F.  (2012)

Electron paramagnetic resonance study of a photosynthetic microbial mat and comparison with archean cherts

Orig Life Evol Biosph. 42 (6) 569-585
Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

Organic radicals in artificially carbonized biomass dominated by oxygenic and non-oxygenic photosynthetic bacteria, Microcoleus chthonoplastes-like and Chloroflexus-like bacteria respectively, were studied by Electron Paramagnetic Resonance (EPR) spectroscopy. The two bacteria species were sampled in mats from a hypersaline lake. They underwent accelerated ageing by cumulative thermal treatments to induce progressive carbonization of the biological material, mimicking the natural maturation of carbonaceous material of Archean age. For thermal treatments at temperatures higher than 620 °C, a drastic increase in the EPR linewidth is observed in the carbonaceous matter from oxygenic photosynthetic bacteria and not anoxygenic photosynthetic bacteria. This selective EPR linewidth broadening reflects the presence of a catalytic element inducing formation of radical aggregates, without affecting the molecular structure or the microstructure of the organic matter, as shown by Raman spectroscopy and Transmission Electron Microscopy. For comparison, we carried out an EPR study of organic radicals in silicified carbonaceous rocks (cherts) from various localities, of different ages (0.42 to 3.5 Gyr) and having undergone various degrees of metamorphism, i.e. various degrees of natural carbonization. EPR linewidth dispersion for the most primitive samples was quite significant, pointing to a selective dipolar broadening similar to that observed for carbonized bacteria. This surprising result merits further evaluation in the light of its potential use as a marker of past bacterial metabolisms, in particular oxygenic photosynthesis, in Archean cherts.

Ferretti, A., Cavalazzi, B., Barbieri, R., Westall, F., Foucher, F. and Todesco, R.  (2012)

From black-and-white to colour in the Silurian

Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 367-368, pages178-192
Ironstones and iron-rich limestones regularly occur as components of time-specific intervals of the Palaeozoic as well as in younger times (Brett et al., this issue). Silurian sediments deposited at high latitudes along the peri-Gondwana border are characterized by black and white limestone and graptolitic shale sequences. Those in the Carnic Alps (southern Austria) additionally contain colourful pink to red limestones and ironstones. Laminated structures such as the (ferruginous)-coatings around skeletal fragments (mostly trilobites and some cephalopods and echinoderms) and stromatolitic features along discontinuity surfaces display dark red, green, white and brownish colours due to the presence of goethite,magnetite, hematite, chamosite, calcite and subordinate apatite.

Confocal laser Raman microscopy and complementary microscopic analysis of these ferruginous laminated structures document the presence of carbonaceousmatter associatedwith fossilizedmicrobial structures in the form of stromatolites, filaments and coccoids, suggesting a microbial role in the colouring of the Silurian world of the Carnic Alps. Iron concentrations up to 30× that of matrix and surrounding non-ferruginous rocks suggest blooms of iron microbe activity in response to the time-specific occurrence of chemically charged sea water during global biotic events.

Ironstones and iron-rich limestones regularly occur as components of time-specific intervals of the Palaeozoic as well as in younger times (Brett et al., this issue). Silurian sediments deposited at high latitudes along the peri-Gondwana border are characterized by black and white limestone and graptolitic shale sequences. Those in the Carnic Alps (southern Austria) additionally contain colourful pink to red limestones and ironstones. Laminated structures such as the (ferruginous)-coatings around skeletal fragments (mostly trilobites and some cephalopods and echinoderms) and stromatolitic features along discontinuity surfaces display dark red, green, white and brownish colours due to the presence of goethite,magnetite, hematite, chamosite, calcite and subordinate apatite.
Confocal laser Raman microscopy and complementary microscopic analysis of these ferruginous laminated structures document the presence of carbonaceousmatter associatedwith fossilizedmicrobial structures in the form of stromatolites, filaments and coccoids, suggesting a microbial role in the colouring of the Silurian world of the Carnic Alps. Iron concentrations up to 30× that of matrix and surrounding non-ferruginous rocks suggest blooms of iron microbe activity in response to the time-specific occurrence of chemically charged sea water during global biotic events.

Meunier, A., Petit, S., Ehlmann, B.L., Dudoignon, P., Westall, F., Mas, A., El Albani, A. and Ferrage, E.  (2012)

Magmatic precipitation as a possible origin of Noachian clays on Mars

Nature Geoscience, 5, 739-743
Hydrous clay minerals detected on the surface of Mars have been interpreted as indicators of the hydrologic and climatic evolution of the planet. The iron- and magnesium-rich clays described in thick, extensive outcrops of Noachian crust have been proposed to originate from aqueous weathering. This would imply that liquid water was stable at the surface of early Mars, presumably when the climate was warmer and wetter. Here we show that iron- and magnesium-rich clays can alternatively form by direct precipitation from residual, water-rich magma-derived fluids. Infrared reflectance spectra from terrestrial lavas from the Mururoa Atoll (French Polynesia) that underwent this precipitation process are similar to those measured for the Noachian crust. Such an origin is also consistent with the D/H ratio of iron- and magnesium-rich clays in some martian meteorites and the widespread presence of these clays in massive basaltic lavas, breccias and regolith. We propose that the progressive degassing of the martian interior over time and the resultant increasingly water-poor magmatic fluids—and not a cooling climate—may explain the absence of clays in Hesperian-aged and more recent formations.

Hydrous clay minerals detected on the surface of Mars have been interpreted as indicators of the hydrologic and climatic evolution of the planet. The iron- and magnesium-rich clays described in thick, extensive outcrops of Noachian crust have been proposed to originate from aqueous weathering. This would imply that liquid water was stable at the surface of early Mars, presumably when the climate was warmer and wetter. Here we show that iron- and magnesium-rich clays can alternatively form by direct precipitation from residual, water-rich magma-derived fluids. Infrared reflectance spectra from terrestrial lavas from the Mururoa Atoll (French Polynesia) that underwent this precipitation process are similar to those measured for the Noachian crust. Such an origin is also consistent with the D/H ratio of iron- and magnesium-rich clays in some martian meteorites and the widespread presence of these clays in massive basaltic lavas, breccias and regolith. We propose that the progressive degassing of the martian interior over time and the resultant increasingly water-poor magmatic fluids—and not a cooling climate—may explain the absence of clays in Hesperian-aged and more recent formations.

Cottin, H., Noblet, A., Guan, Y.Y., Poch, O., Saiagh, K., Cloix, M., Macari, F., Jérome, M., Coll, P., Raulin, F., Stalport, F., Szopa, C., Bertrand, M., Chabin, A., Westall, F., Chaput, D., Demets, R. and Brack, A.  (2012)

The PROCESS experiment : an astrochemistry laboratory for solid and gaseous organic samples in low Earth orbit.

Astrobiology 12 (5) 412-425
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.

The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.

Bertrand, M., Chabin, A., Brack, A., Cottin, H., Chaput, D. and Westall, F.  (2012)

The PROCESS Experiment : Exposure of amino acids in the EXPOSE-E experiment on the ISS and in laboratory simulations.

Astrobiology 12 (5) 426-435
To understand the chemical behavior of organic molecules in the space environment, amino acids and a dipeptide in pure form and embedded in meteorite powder were exposed in the PROCESS experiment in the EXPOSE-E facility mounted on the European Technology Exposure Facility (EuTEF) platform on board the International Space Station (ISS). After exposure to space conditions for 18 months, the samples were returned to Earth and analyzed in the laboratory for reactions caused by solar UV and cosmic radiation. Chemical degradation and possible racemization and oligomerization, the main reactions caused by photochemistry in the vacuum ultraviolet domain (VUV, wavelength range 100–200 nm for photon energy from 6.2 to 12.4 eV) were examined in particular. The molecules were extracted and derivatized by silylation and analyzed by gas chromatograph coupled to a mass spectrometer (GC-MS) to quantify the rate of the degradation of the compounds. Laboratory exposure in several wavelength ranges from UV to VUV was carried out in parallel in the Cologne Deutsches Zentrum für Luft- und Raumfahrt (DLR) Center and Centre de biophysique moléculaire (CBM) laboratories. The results show that resistance to irradiation is a function of the chemical nature of the exposed molecules and the wavelengths of the UV light. The most altered compounds were the dipeptide, aspartic acid, and aminobutyric acid. The most resistant were alanine, valine, glycine, and aminoisobutyric acid. Our results also demonstrate the protective effect of meteorite powder, which reemphasizes the importance of exogenic contribution to the inventory of prebiotic organics on early Earth.

To understand the chemical behavior of organic molecules in the space environment, amino acids and a dipeptide in pure form and embedded in meteorite powder were exposed in the PROCESS experiment in the EXPOSE-E facility mounted on the European Technology Exposure Facility (EuTEF) platform on board the International Space Station (ISS). After exposure to space conditions for 18 months, the samples were returned to Earth and analyzed in the laboratory for reactions caused by solar UV and cosmic radiation. Chemical degradation and possible racemization and oligomerization, the main reactions caused by photochemistry in the vacuum ultraviolet domain (VUV, wavelength range 100–200 nm for photon energy from 6.2 to 12.4 eV) were examined in particular. The molecules were extracted and derivatized by silylation and analyzed by gas chromatograph coupled to a mass spectrometer (GC-MS) to quantify the rate of the degradation of the compounds. Laboratory exposure in several wavelength ranges from UV to VUV was carried out in parallel in the Cologne Deutsches Zentrum für Luft- und Raumfahrt (DLR) Center and Centre de biophysique moléculaire (CBM) laboratories. The results show that resistance to irradiation is a function of the chemical nature of the exposed molecules and the wavelengths of the UV light. The most altered compounds were the dipeptide, aspartic acid, and aminobutyric acid. The most resistant were alanine, valine, glycine, and aminoisobutyric acid. Our results also demonstrate the protective effect of meteorite powder, which reemphasizes the importance of exogenic contribution to the inventory of prebiotic organics on early Earth.

Bost, N., Westall, F., Gaillard, F., Ramboz, C. and Foucher, F.  (2012)

Synthesis of a spinifex-textured basalt as an analog to Gusev crater basalts, Mars

Meteoritics & Planetary Science 47 (5) 820-831
Analyses by the Mars Exploration Rover (MER), Spirit, of Martian basalts from Gusev crater show that they are chemically very different from terrestrial basalts, being characterized in particular by high Mg- and Fe-contents. To provide suitable analog basalts for the International Space Analogue Rockstore (ISAR), a collection of analog rocks and minerals for preparing in situ space missions, especially, the upcoming Mars mission MSL- 2011 and the future international Mars-2018 mission, it is necessary to synthesize Martian basalts. The aim of this study was therefore to synthesize Martian basalt analogs to the Gusev crater basalts, based on the geochemical data from the MER rover Spirit. We present the results of two experiments, one producing a quench-cooled basalt (<1 h) and one producing a more slowly cooled basalt (1 day). Pyroxene and olivine textures produced in the more slowly cooled basalt were surprisingly similar to spinifex textures in komatiites, a volcanic rock type very common on the early Earth. These kinds of ultramafic rocks and their associated alteration products may have important astrobiological implications when associated with aqueous environments. Such rocks could provide habitats for chemolithotrophic microorganisms, while the glass and phyllosilicate derivatives can fix organic compounds.

Analyses by the Mars Exploration Rover (MER), Spirit, of Martian basalts from Gusev crater show that they are chemically very different from terrestrial basalts, being characterized in particular by high Mg- and Fe-contents. To provide suitable analog basalts for the International Space Analogue Rockstore (ISAR), a collection of analog rocks and minerals for preparing in situ space missions, especially, the upcoming Mars mission MSL- 2011 and the future international Mars-2018 mission, it is necessary to synthesize Martian basalts. The aim of this study was therefore to synthesize Martian basalt analogs to the Gusev crater basalts, based on the geochemical data from the MER rover Spirit. We present the results of two experiments, one producing a quench-cooled basalt (<1 h) and one producing a more slowly cooled basalt (1 day). Pyroxene and olivine textures produced in the more slowly cooled basalt were surprisingly similar to spinifex textures in komatiites, a volcanic rock type very common on the early Earth. These kinds of ultramafic rocks and their associated alteration products may have important astrobiological implications when associated with aqueous environments. Such rocks could provide habitats for chemolithotrophic microorganisms, while the glass and phyllosilicate derivatives can fix organic compounds.


2011   Références trouvées : 9

Westall, F. ; Cavalazzi, B. ; Lemelle, L. ; Marrocchi, Y. ; Rouzaud, J.-N. ; Simionovici, A. ; Salomé, M. ; Mostefaoui, S. ; Andreazza, C. ; Foucher, F. ; Toporski, J. ; Jauss, A. ; Thiel, V. ; Southam, G. ; MacLean, L. ; Wirick, S. ; Hofmann, A. l. ; Meibom, A. ; Robert, F. and Défarge, C.  (2011)

Implications of in situ calcification for photosynthesis in a 3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa

Earth and Planetary Science Letters 2011, 310, (3–4), 468-479
Timing the appearance of photosynthetic microorganisms is crucial to understanding the evolution of life on Earth. The ability of the biosphere to use sunlight as a source of energy (photoautotrophy) would have been essential for increasing biomass and for increasing the biogeochemical capacity of all prokaryotes across the range of redox reactions that support life. Typical proxies for photosynthesis in the rock record include features, such as a mat-like, laminated morphology (stratiform, domical, conical) often associated with bulk geochemical signatures, such as calcification, and a fractionated carbon isotope signature. However, to date, in situ, calcification related to photosynthesis has not been demonstrated in the oldest known microbial mats. We here use in situ nanometre-scale techniques to investigate the structural and compositional architecture in a 3.3&#xa0;billion-year (Ga) old microbial biofilm from the Barberton greenstone belt, thus documenting in situ calcification that was most likely related to anoxygenic photosynthesis. The Josefsdal Chert Microbial Biofilm (JCMB) formed in a littoral (photic) environment. It is characterised by a distinct vertical structural and compositional organisation. The lower part is calcified in situ by aragonite, progressing upwards into uncalcified kerogen characterised by up to 1% sulphur, followed by an upper layer that contains intact filaments at the surface. Crystallites of pseudomorphed pyrite are also associated with the biofilm suggesting calcification related to the activity of heterotrophic sulphur reducing bacteria. In this anoxygenic, nutrient-limited environment, the carbon required by the sulphur reducing bacteria could only have been produced by photoautotrophy. We conclude that the Josfsdal Chert Microbial Biofilm was formed by a consortium of anoxygenic microorganisms, including photosynthesisers and sulphur reducing bacteria.

Timing the appearance of photosynthetic microorganisms is crucial to understanding the evolution of life on Earth. The ability of the biosphere to use sunlight as a source of energy (photoautotrophy) would have been essential for increasing biomass and for increasing the biogeochemical capacity of all prokaryotes across the range of redox reactions that support life. Typical proxies for photosynthesis in the rock record include features, such as a mat-like, laminated morphology (stratiform, domical, conical) often associated with bulk geochemical signatures, such as calcification, and a fractionated carbon isotope signature. However, to date, in situ, calcification related to photosynthesis has not been demonstrated in the oldest known microbial mats. We here use in situ nanometre-scale techniques to investigate the structural and compositional architecture in a 3.3 billion-year (Ga) old microbial biofilm from the Barberton greenstone belt, thus documenting in situ calcification that was most likely related to anoxygenic photosynthesis. The Josefsdal Chert Microbial Biofilm (JCMB) formed in a littoral (photic) environment. It is characterised by a distinct vertical structural and compositional organisation. The lower part is calcified in situ by aragonite, progressing upwards into uncalcified kerogen characterised by up to 1% sulphur, followed by an upper layer that contains intact filaments at the surface. Crystallites of pseudomorphed pyrite are also associated with the biofilm suggesting calcification related to the activity of heterotrophic sulphur reducing bacteria. In this anoxygenic, nutrient-limited environment, the carbon required by the sulphur reducing bacteria could only have been produced by photoautotrophy. We conclude that the Josfsdal Chert Microbial Biofilm was formed by a consortium of anoxygenic microorganisms, including photosynthesisers and sulphur reducing bacteria.

de Marcellus, P., Bertrand, M., Nuevo, M., Westall, F. and Hendecourt, L.L.  (2011)

Prebiotic Significance of Extraterrestrial Ice Photochemistry : Detection of Hydantoin in Organic Residues

Astrobiology 11 (9) 847-854
The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.

The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.

Cavalazzi, B., Westall, F., Cady, S. L., Barbieri, R. & Foucher, F.  (2011)

Potential Fossil Endoliths in Vesicular Pillow Basalt, Coral Patch Seamount, Eastern North Atlantic Ocean.

Astrobiology 11 (7) 619-632
The chilled rinds of pillow basalt from the Ampere-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include filamentous and spherical microfossil-like structures, were detected in K-phillipsite-filled amygdules within the chilled rinds. The filamentous structures (similar to 2.5 mu m in diameter) occur as K-phillipsite tubules surrounded by an Fe-oxyhydroxide (lepidocrocite) rich membranous structure, whereas the spherical structures (from 4 to 2 mu m in diameter) are associated with Ti oxide (anatase) and carbonaceous matter. Several lines of evidence indicate that the microfossil-like structures in the pillow basalt are the fossilized remains of microorganisms. Possible biosignatures include the carbonaceous nature of the spherical structures, their size distributions and morphology, the presence and distribution of native fluorescence, mineralogical and chemical composition, and environmental context. When taken together, the suite of possible biosignatures supports the hypothesis that the fossil-like structures are of biological origin. The vesicular microhabitat of the rock matrix is likely to have hosted a cryptoendolithic microbial community. This study documents a variety of evidence for past microbial life in a hitherto poorly investigated and underestimated microenvironment, as represented by the amygdules in the chilled pillow basalt rinds. This kind of endolithic volcanic habitat would have been common on the early rocky planets in our Solar System, such as Earth and Mars. This study provides a framework for evaluating traces of past life in vesicular pillow basalts, regardless of whether they occur on early Earth or Mars.

The chilled rinds of pillow basalt from the Ampere-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include filamentous and spherical microfossil-like structures, were detected in K-phillipsite-filled amygdules within the chilled rinds. The filamentous structures (similar to 2.5 mu m in diameter) occur as K-phillipsite tubules surrounded by an Fe-oxyhydroxide (lepidocrocite) rich membranous structure, whereas the spherical structures (from 4 to 2 mu m in diameter) are associated with Ti oxide (anatase) and carbonaceous matter. Several lines of evidence indicate that the microfossil-like structures in the pillow basalt are the fossilized remains of microorganisms. Possible biosignatures include the carbonaceous nature of the spherical structures, their size distributions and morphology, the presence and distribution of native fluorescence, mineralogical and chemical composition, and environmental context. When taken together, the suite of possible biosignatures supports the hypothesis that the fossil-like structures are of biological origin. The vesicular microhabitat of the rock matrix is likely to have hosted a cryptoendolithic microbial community. This study documents a variety of evidence for past microbial life in a hitherto poorly investigated and underestimated microenvironment, as represented by the amygdules in the chilled pillow basalt rinds. This kind of endolithic volcanic habitat would have been common on the early rocky planets in our Solar System, such as Earth and Mars. This study provides a framework for evaluating traces of past life in vesicular pillow basalts, regardless of whether they occur on early Earth or Mars.

Orange, F., Disnar, J.R., Westall, F., Prieur, D., & Baillif, P.  (2011)

Metal cation binding by the hyperthermophilic microorganism, Archaea Methanocaldococcus Jannaschii, and its effects on silicification.

Palaeontology 54 (5) 953-964

Orange, F. Chabin, A. Gorlas, A. Lucas-Staat, S. Geslin, C. Le Romancer, M. Prangishvili, D. Forterre, P. & Westall, F.  (2011)

Experimental fossilisation of viruses from extremophilic Archaea.

Biogeosciences 8 (6) 1465-1475

Westall, F., Foucher, F., Cavalazzi, C., de Vries, S.T., Nijmanb, W., Pearson, V., Watson, J., Verchovsky, A., Wright, I., Rouzaud, J.-N., Marchesini, D. & Anne, S.  (2011)

Volcaniclastic habitats for early life on Earth and Mars : A case study from ∼3.5 Ga-old rocks from the Pilbara, Australia

Planetary and Space Science 59 (10) 1093-1106

Westall, F.  (2011)

Early life : nature, distribution and evolution

In "Origins and evolution of life - An astrobiological perspective" Gargaud, M., López-Garcìa, P., & Martin, H. (Eds.) Cambridge Astrobiology 391-413

Parnell, J., Bowden, S. A., Muirhead, D., Blamey, N., Westall, F., Demets, R., Verchovsky, S., Brandstatter, F. & Brack, A.  (2011)

Preservation of organic matter in the STONE 6 artificial meteorite experiment

Icarus 212 (1) 390-402

Westall, F. & Cavalazzi, B.   (2011)

Biosignatures in rocks

In "Encyclopedia of Geobiology" V. Thiel, J. Reitner (Eds.) Springer, Berlin,


2010   Références trouvées : 10

Pratt, L. M. Allen, C. Allwood, A. Anbar, A. Atreya, S. Carr, M. Des Marais, D. Grant, J. Glavin, D. Hamilton, V. Herkenhoff, K. Hipkin, V. Lollar, B. S. McCollom, T. McEwen, A. McLennan, S. Milliken, R. Ming, D. Ori, G. G. Parnell, J. Poulet, F. and Westall, F. (Mars Mid-Range Rover Science Analysis Group)  (2010)

The Mars Astrobiology Explorer-Cacher (MAX-C) : a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG)

Astrobiology 10 (2) 127-163
This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL&mdash;this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives : (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL—this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives : (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

Foucher, F., Cavalazzi, B. & Westall, F.  (2010)

Micro-RAMAN Characterization of Precambrian Permineralized Cells, Draken Formation Preliminary Results.

Origins of Life and Evolution of Biospheres - 40 (6) 528-529

Orange, F. Disnar, J. R. Westall, F. Prieur, D. & Baillif, P.  (2010)

Metals Binding by the Early Earth Analogue Microorganism, Archaea Methanocaldococcus jannaschu and its Effects on Silicification

Origins of Life and Evolution of Biospheres - 40 (6) 526-527

Kminek, G. Rummel, J. D. Cockell, C. S. Atlas, R. Barlow, N. Beaty, D. Boynton, W. Carr, M. Clifford, S. Conley, C. A. Davila, A. F. Debus, A. Doran, P. Hecht, M. Heldmann, J. Helbert, J. Hipkin, V. Horneck, G. Kieft, T. L. Klingelhoefer, G. Meyer, M. Newsom, H. Ori, G. G. Parnell, J. Prieur, D. Raulin, F. Schulze-Makuch, D. Spry, J. A. Stabekis, P. E. Stackebrandt, E. Vago, J. Viso, M. Voytek, M. Wells, L. & Westall, F.  (2010)

Report of the COSPAR Mars Special Regions Colloquium

Advances in Space Research - 46 (6) 811-829

Bourbin, M. Derenne, S. Westall, F. and Robert, F.  (2010)

Common Biogenicity Markers in Barberton (South Africa) and Warrawoona (Australia) Archean Cherts

Origins of Life and Evolution of Biospheres 40 (6) : 525-526

Westall, F.   (2010)

Early life : nature, distribution and evolution

In "Origins and evolution of life an astrobiological perspective" M. Gargaud, P. López-Garcìa, H. Martin (Eds.) Cambridge University Press, 391-413

Hoehler, T.M. and Westall, F.  (2010)

Mars Exploration Program Analysis Group Goal One : Determine if life ever arose on Mars

Astrobiology - 10 (9) 859-867

Grant, J.A., Westall, F. & the MEPAG 2R-iSAG team  (2010)

Two rovers to the same site on Mars, 2018 : possibilities for cooperative science

Astrobiology 10:663–685

Lammer H, Selsis F, Chassefière E, Breuer D, Griessmeier JM, Kulikov YN, Erkaev NV, Khodachenko ML, Biernat HK, Leblanc F, Kallio E, Lundin R, Westall F, Bauer SJ, Beichman C, Danchi W, Eiroa C, Fridlund M, Gröller H, Hanslmeier A, Hausleitner W, Henning T, Herbst T, Kaltenegger L, Léger A, Leitzinger M, Lichtenegger HI, Liseau R, Lunine J, Motschmann U, Odert P, Paresce F, Parnell J, Penny A, Quirrenbach A, Rauer H, Röttgering H, Schneider J, Spohn T, Stadelmann A, Stangl G, Stam D, Tinetti G and White GJ.  (2010)

Geophysical and atmospheric evolution of habitable planets.

Astrobiology 10, 45-68.

Foucher, F., Westall, F., Brandstatter, F., Demets, R., Parnell, J., Cockell, C., Edwards, H., Beny, J.M. & Brack, A.   (2010)

Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere : the STONE 6 experiment.

Icarus 207, 616-630


2009   Références trouvées : 13

Cavalazzi, B., Westall, F. & Barbieri, R.  (2009)

Crypto-)endoliths from vesicular pillow lavas, Coral Patch Seamount, North Atlantic Ocean

Studi. Trent. Sci. Nat. Acta Geol. 83, 177-182

Worms, J., Lammer, H., Barucci, A., Beebe, R., Bibring, J., Blamont, J., Blanc, M., Bonnet, R., Brucato, J., Chassefière, E., Coradini, A., Crawford, I., Westall, F., Gerzer, R., Grady, M., Grande, M., Koch, B., Lobanov, A., Lopez-Moreno, J., Marco, R. & Norsk, P.T., C.  (2009)

Position paper : Science-Driven Scenario for Space Exploration from European Space Sciences Committee : ESSC.

Astrobiology 9, 23-41.

Westall, F., Lemelle, L., Simionovici, A., Salome, M., Marrocchi, Y., Foucher, F., Cavalazzi, B., Meibom, A., Robert, F., Mostafaoui, S., Jauss, A., Toporski, J., Laclean, L., Southam, G., Wirick, S., Villette, S., Jamme, F. & Dumas, P.  (2009)

In situ analysis of the molecular organic and elemental composition of a 3.33 Ga microbial mat from Barberton.

Geochim. Cosmochim. Acta 73, A1430.

Westall, F.  (2009)

Life on an anaerobic planet.

Science 232, 471-472.

Westall, F.  (2009)

Early Achaean Microenvironments and Their Microbial Inhabitants.

Origins Life Evol. B. 39, 375-377.

Orange, F., Westall, F., Disnar, J.R., Prieur, D., Gautret, P., Le Romancer, M. & Dfarge, C.  (2009)

Experimental Silicification of Thermophilic Microorganisms. Relevance for Early Life on Earth and Mars.

Origins Life Evol. B. 39, 361-362.

Orange, F., Westall, F., Disnar, J.R., Prieur, D., Bienvenu, N., Leromancer, M. & Defarge, C.  (2009)

Experimental silicification of the extremophilic Archaea Pyrococcus abyssi and Methanocaldococcus jannaschii : applications in the search for evidence of life in early Earth and extraterrestrial rocks.

Geobiology 7, 403-418.

Foucher, F., Westall, F., Bény, J.M., Brandstätter, F. & Demets, R.  (2009)

STONE 6 Experiment : An Investigation of the Survival of Microfossils During Atmospheric Entry.

Origins Life Evol. B. 39, Nr 4, Special Issue : Abstracts from the 2008 ISSOL meeting, 360-361.

Cockell, C.S., Leger, A., Fridlund, M., Herbst, T.M., Kaltenegger, L., Absil, O., Beichman, C., Benz, W., Blanc, M., Brack, A., Chelli, A., Colangeli, L., Cottin, H., du Foresto, F.C., Danchi, W.C., Defrere, D., den Herder, J.W., Eiroa, C., Greaves, J., Henning, T., Johnston, K.J., Jones, H., Labadie, L., Lammer, H., Launhardt, R., Lawson, P., Lay, O.P., LeDuigou, J.M., Liseau, R., Malbet, F., Martin, S.R., Mawet, D., Mourard, D., Moutou, C., Mugnier, L.M., Ollivier, M., Paresce, F., Quirrenbach, A., Rabbia, Y.D., Raven, J.A., Rottgering, H.J.A., Rouan, D., Santos, N.C., Selsis, F., Serabyn, E., Shibai, H., Tamura, M., Thiebaut, E., Westall, F. & White, G.J.  (2009)

Darwin-A Mission to Detect and Search for Life on Extrasolar Planets.

Astrobiology 9, 1-22.

Cockell, C.S., Herbst, T., Leger, A., Absil, O., Beichman, C., Benz, W., Brack, A., Chazelas, B., Chelli, A., Cottin, H., du Foresto, V., Danchi, W., Defrere, D., Den Herder, J.W., Eiroa, C., Fridlund, M., Henning, T., Johnston, K., Kaltenegger, L., Labadie, L., Lammer, H., Launhardt, R., Lawson, P., Lay, O.P., Liseau, R., Martin, S.R., Mawet, D., Mourard, D., Moutou, C., Mugnier, L., Paresce, F., Quirrenbach, A., Rabbia, Y., Rottgering, H.J.A., Rouan, D., Santos, N., Selsis, F., Serabyn, E., Westall, F., White, G., Ollivier, M. & Borde, P.  (2009)

Darwin-an experimental astronomy mission to search for extrasolar planets.

Exp. Astron. 23, 435-461.

Chabin, A., Bertrand, M., Brack, A., Cottin, H. & Westall, F.  (2009)

Exposure of Amino Acids on the International Space Station : EXPOSE-Eutef and EXPOSE-R.

Origins Life Evol. B. 39, 352-353.

Bertrand, M., Van der Gaast, S., Vilas, F., Horz, F., Haynes, G., Chabin, A., Brack, A. & Westall, F.  (2009)

Effect of impact shock simulation on amino acids.

Origins Life Evol. B. 39, 52-53.

Bertrand, M., van der Gaast, S., Vilas, F., Horz, F., Haynes, G., Chabin, A., Brack, A. & Westall, F.  (2009)

The Fate of Amino Acids During Simulated Meteoritic Impact.

Astrobiology 9, 943-951.


2008   Références trouvées : 9

Walsh, M.M. and Westall, F.  (2008)

Disentangling the microbial fossil record in the Barberton greenstone belt : a cautionary tale

In "From Fossils to Astrobiology" J. Seckbach (Ed.), Spinger Netherlands, 25-37

Westall, F., Gerdes, G. & Hofmann, B.A.  (2008)

Shallow-water biolaminated sediments in a 3.33 Ga-old chert from Barverton.

Inter. J. Astrobiol. 7, 79.

Pullan, D., Westall, F., Hofmann, B.A., Parnell, J., Cockell, C.S., Edwards, H.G.M., Villar, S.E.J., Schroder, C., Cressey, G., Marinangeli, L., Richter, L. & Klingelhofer, G.  (2008)

Identification of morphological biosignatures in martian analogue field specimens using in situ planetary instrumentation.

Astrobiology 8, 119-156.

The Mepag Next Decade Science Analysis Group (incl. F. Westall)   (2008)

Science priorities for Mars Sample Return

Astrobiology 8, 489-535.

Beaty, D. MEPAG ND-SAG team (incl. F. Westall), and IMEWG IMARS team (incl. F. Westall)   (2008)

Preliminary Findings Related to the Use of Sample Return to Advance Our Life-Related Goals for Mars.

Astrobiology 8, 420.

Westall, F   (2008)

Morphological biosignatures in terrestrial and extraterrestrial materials

Space Science Reviews 135, 95-114

Lemelle, L ; Labrot, P ; Salome, M ; Simionovici, A ; Viso, M ; Westall, F  (2008)

In situ imaging of organic sulfur in 700-800 My-old Neoproterozoic microfossils using X-ray spectromicroscopy at the SK-edge

Organic Geochemistry 39 (2) 188-202
The study of very ancient microfossils has recently raised contentious issues regarding interpretation of the biogenicity of the structures. In situ investigation of certain elements such as sulfur within potential microfossils is a powerful complement to other methods of investigation that can provide valuable information on biogenicity. We present here a first such study on Precambrian microfossils from the 700-800-My-old Neoproterozoic Draken Formation, Svalbard, using scanning X-ray microscopy (SXM) in the fluorescence mode and X-ray absorption near edge spectroscopy (XANES) at the sulfur K-edge. SXM allowed mapping of up to 300 ppm of probably endogenous sulfur within the kerogenous walls of Myxococcoides chlorelloidea microfossils. XANES showed that the sulfur is most likely contained in heterocyclic organic compounds, such as thiophene(s). (C) 2007 Elsevier Ltd. All rights reserved.

The study of very ancient microfossils has recently raised contentious issues regarding interpretation of the biogenicity of the structures. In situ investigation of certain elements such as sulfur within potential microfossils is a powerful complement to other methods of investigation that can provide valuable information on biogenicity. We present here a first such study on Precambrian microfossils from the 700-800-My-old Neoproterozoic Draken Formation, Svalbard, using scanning X-ray microscopy (SXM) in the fluorescence mode and X-ray absorption near edge spectroscopy (XANES) at the sulfur K-edge. SXM allowed mapping of up to 300 ppm of probably endogenous sulfur within the kerogenous walls of Myxococcoides chlorelloidea microfossils. XANES showed that the sulfur is most likely contained in heterocyclic organic compounds, such as thiophene(s). (C) 2007 Elsevier Ltd. All rights reserved.

Cottin, H ; Coll, P ; Coscia, D ; Fray, N ; Guan, YY ; Macari, F ; Raulin, F ; Rivron, C ; Stalport, F ; Szopa, C ; Chaput, D ; Viso, M ; Bertrand, M ; Chabin, A ; Thirkell, L ; Brack, A ; Westall, F  (2008)

Heterogeneous solid/gas organic compounds related to comets, meteorites, Titan and Mars : Laboratory and in lower Earth orbit experiments

Advances in Space Research 42 (12) 2019-2035.

Bertrand, M. ; Chabin, A. ; Brack, A. & Westall, F.  (2008)

Separation of amino acid enantiomers via chiral derivatization and non chiral column by gas chromatography

Journal of Chromatography A 1180 (1-2), 131-137.
Two GC-MS methods for the enantioselective separation of the 20 proteinogenic amino acids are compared. Ethyl chloroformate and 2-chloropropanol were used to derivatize amino acid enantiomers. The diastereomers formed were separated on a non-chiral column by capillary gas chromatography. The separation performances were compared to those obtained when using non-chiral derivatization on a chiral column. (c) 2007 Elsevier B.V. All rights reserved.

Two GC-MS methods for the enantioselective separation of the 20 proteinogenic amino acids are compared. Ethyl chloroformate and 2-chloropropanol were used to derivatize amino acid enantiomers. The diastereomers formed were separated on a non-chiral column by capillary gas chromatography. The separation performances were compared to those obtained when using non-chiral derivatization on a chiral column. (c) 2007 Elsevier B.V. All rights reserved.


2007   Références trouvées : 6

Jakosky, B., Westall, F. and Brack, A.  (2007)

Mars

In Sullivan, W. and Baross, J. (Eds.) , Planets and Life : The Emerging Science of Astrobiology, Cambridge Univ. Press, 357-387

Southam, G ; Rothschild, LJ ; Westall, F  (2007)

The geology and habitability of terrestrial planets : Fundamental requirements for life

Space Science Reviews 129 (1-3) 7-34
The current approach to the study of the origin of life and to the search for life elsewhere is based on two assumptions. First, life is a purely physical phenomenon closely linked to specific environmental conditions. From this, we hypothesise that when these environmental conditions are met, life will arise and evolve. If these assumptions are valid, the search for life elsewhere should be a matter of mapping what we know about the range of environments in which life can exist, and then simply trying to find these environments elsewhere. Second, life can be clearly distinguished from the non-living world.

The current approach to the study of the origin of life and to the search for life elsewhere is based on two assumptions. First, life is a purely physical phenomenon closely linked to specific environmental conditions. From this, we hypothesise that when these environmental conditions are met, life will arise and evolve. If these assumptions are valid, the search for life elsewhere should be a matter of mapping what we know about the range of environments in which life can exist, and then simply trying to find these environments elsewhere. Second, life can be clearly distinguished from the non-living world.

Edwards, HGM ; Villar, SEJ ; Pullan, D ; Hargreaves, MD ; Hofmann, BA ; Westall, F  (2007)

Morphological biosignatures from relict fossilised sedimentary geological specimens : a Raman spectroscopic study

Journal of Raman Spectroscopy 38 1352-1361
Morphological biosignatures (features related to life) and associated terrestrial sedimentary structures that provide possible sampling targets for the remote astrobiological exploration of planets have been analysed using Raman spectroscopic techniques. The spectral data from a suite of samples comprising cryptochasmoendoliths, preserved microbial filaments and relict sedimentary structures comprise a preliminary database for the establishment of key Raman biosignatures. This will form the basis for the evaluation of prototype miniaturised instrumentation for the proposed ESA ExoMars mission scheduled for 2013.

Morphological biosignatures (features related to life) and associated terrestrial sedimentary structures that provide possible sampling targets for the remote astrobiological exploration of planets have been analysed using Raman spectroscopic techniques. The spectral data from a suite of samples comprising cryptochasmoendoliths, preserved microbial filaments and relict sedimentary structures comprise a preliminary database for the establishment of key Raman biosignatures. This will form the basis for the evaluation of prototype miniaturised instrumentation for the proposed ESA ExoMars mission scheduled for 2013.

Pullan, D ; Westall, F ; Hofmann, BA ; Parnel, J ; Cockell, CS ; Edwards, HGM ; Jorge Villar, SE ; Schröder, C ; Cressey, G ; Marinangeli, L ; Richter, L ; Klingelhöfer, G   (2007)

Identification of morphological biosignatures in martian analog field specimens using in situ planetary instrumentation : an integrated approach

Astrobiology 8 119-156

Southam, G. & Westall, F.   (2007)

Geology, life and habitability

T. Spohn (Ed.), Treatise On Geophysics - Vol. 10 Planets and Moons, Elsevier, Amsterdam, 421-438.

Nisbet, E ; Zahnle, K ; Gerasimov, MV ; Helbert, J ; Jaumann, R ; Hofmann, BA ; Benzerara, K ; Westall, F  (2007)

Creating habitable zones, at all scales, from planets to mud micro-habitats, on earth and on mars

Space Science Reviews 129 (1-3) 79-121
The factors that create a habitable planet are considered at all scales, from planetary inventories to micro-habitats in soft sediments and intangibles such as habitat linkage. The possibility of habitability first comes about during accretion, as a product of the processes of impact and volatile inventory history. To create habitability water is essential, not only for life but to aid the continual tectonic reworking and erosion that supply key redox contrasts and biochemical substrates to sustain habitability. Mud or soft sediment may be a biochemical prerequisite, to provide accessible substrate and protection. Once life begins, the habitat is widened by the activity of life, both by its management of the greenhouse and by partitioning reductants (e.g. dead organic matter) and oxidants (including waste products). Potential Martian habitats are discussed : by comparison with Earth there are many potential environmental settings on Mars in which life may once have occurred, or may even continue to exist. The long-term evolution of habitability in the Solar System is considered.

The factors that create a habitable planet are considered at all scales, from planetary inventories to micro-habitats in soft sediments and intangibles such as habitat linkage. The possibility of habitability first comes about during accretion, as a product of the processes of impact and volatile inventory history. To create habitability water is essential, not only for life but to aid the continual tectonic reworking and erosion that supply key redox contrasts and biochemical substrates to sustain habitability. Mud or soft sediment may be a biochemical prerequisite, to provide accessible substrate and protection. Once life begins, the habitat is widened by the activity of life, both by its management of the greenhouse and by partitioning reductants (e.g. dead organic matter) and oxidants (including waste products). Potential Martian habitats are discussed : by comparison with Earth there are many potential environmental settings on Mars in which life may once have occurred, or may even continue to exist. The long-term evolution of habitability in the Solar System is considered.


2006   Références trouvées : 8

Westall, F. and Southam, G.  (2006)

Early life on Earth

In Archean Geodynamics and Environments (K. Benn, et al. Eds.). pp 283-304. AGU Geophys. Monogr., 164.

Westall, F ; de Vries, ST ; Nijman, W ; Rouchon, V ; Orberger, B ; Pearson, V ; Watson, J ; Verchovsky, A ; Wright, I ; Rouzaud, JN ; Marchesini, D ; Severine, A  (2006)

The 3.466 Ga "Kitty’s Gap Cheil," an early Archean microbial ecosystem

South Africa Processes On The Early Earth, Field Forum on Processes on the Early Earth (405) 105-131 - Editor(s) : Reimold, WU ; Gibson, RL ; Reimold, WU ; Gibson, RL
A multidisciplinary study of silicified volcanoclastic, near-shore deposits from the 3.446 Ga "Kitty's Gap Chert," Warrawoona. Group, Pilbara, reveals that they contain a wealth of carbonaceous microbial fossil remains. The volcanoclastic sediments host predominantly colonies of coccoidal microorganisms that occur in two modal size ranges, 0.4-0.5 mu m and 0.75-0.8 mu m. These microbial colonies coat the surfaces of the volcanic particles and form either dense, carpetlike associations up to tens of micrometers in diameter comprising hundreds of individuals. They also form less dense concentrations that include many chainlike associations of coccoids. All colonies are associated with a polymer film (extracellular polymeric substances-EPS) that coats both the organisms and their substrate. Multispecies biofllms formed at a boundary representing a short period of nondeposition. They consisted predominantly of coccoids and EPS but also included common, small filaments tens of micrometers in length and 0.25 mu m in width and rare, short rods 1 mu m in length. Carbon isotopic compositions of about -26 parts per thousand to -30 parts per thousand, measured on individual layers, are compatible with microbial fractionation. The biofilms include possible anoxygenic-photosynthesizing organisms (the filaments), whereas the colonies coating the volcanic clasts probably represent chemolithotrophic organisms. The interaction between the microbes, their colonies and biofilms, and their environment is intimate and complex. The environment provided the substrate and the nutrient, energy, and carbon sources, whereas the metabolic activity of the microbes contributed to the early diagenetic alteration of the volcanic particles, to the binding of the sediment, and to their silicification. The microorganisms were preserved by rapid silicification, with the silica coming partly from hydrothermal sources and partly from pore water enrichment in Si due to the devitrification of the volcanic protoliths (partially mediated by microbial activity).Our multidisciplinary approach to the study of this sample demonstrates the importance of using complementary methods in order to understand the complex microbe/sediment interactions and to be able to relate different types of microbial colonies/biofilms to different microenvironments. The observations and conclusions from this study have important consequences for the methods that need to be used in the search for traces of past life in general and especially in the search for past life on other planets such as Mars. They also form less dense concentrations that include many chainlike associations of coccoids. All colonies are associated with a polymer film (extracellular polymeric substances-EPS) that coats both the organisms and their substrate. Multispecies biofllms formed at a boundary representing a short period of nondeposition. They consisted predominantly of coccoids and EPS but also included common, small filaments tens of micrometers in length and 0.25 mu m in width and rare, short rods 1 mu m in length. Carbon isotopic compositions of about -26 parts per thousand to -30 parts per thousand, measured on individual layers, are compatible with microbial fractionation. The biofilms include possible anoxygenic-photosynthesizing organisms (the filaments), whereas the colonies coating the volcanic clasts probably represent chemolithotrophic organisms. The interaction between the microbes, their colonies and biofilms, and their environment is intimate and complex. The environment provided the substrate and the nutrient, energy, and carbon sources, whereas the metabolic activity of the microbes contributed to the early diagenetic alteration of the volcanic particles, to the binding of the sediment, and to their silicification. The microorganisms were preserved by rapid silicification, with the silica coming partly from hydrothermal sources and partly from pore water enrichment in Si due to the devitrification of the volcanic protoliths (partially mediated by microbial activity).

A multidisciplinary study of silicified volcanoclastic, near-shore deposits from the 3.446 Ga "Kitty’s Gap Chert," Warrawoona. Group, Pilbara, reveals that they contain a wealth of carbonaceous microbial fossil remains. The volcanoclastic sediments host predominantly colonies of coccoidal microorganisms that occur in two modal size ranges, 0.4-0.5 mu m and 0.75-0.8 mu m. These microbial colonies coat the surfaces of the volcanic particles and form either dense, carpetlike associations up to tens of micrometers in diameter comprising hundreds of individuals. They also form less dense concentrations that include many chainlike associations of coccoids. All colonies are associated with a polymer film (extracellular polymeric substances-EPS) that coats both the organisms and their substrate. Multispecies biofllms formed at a boundary representing a short period of nondeposition. They consisted predominantly of coccoids and EPS but also included common, small filaments tens of micrometers in length and 0.25 mu m in width and rare, short rods 1 mu m in length. Carbon isotopic compositions of about -26 parts per thousand to -30 parts per thousand, measured on individual layers, are compatible with microbial fractionation. The biofilms include possible anoxygenic-photosynthesizing organisms (the filaments), whereas the colonies coating the volcanic clasts probably represent chemolithotrophic organisms. The interaction between the microbes, their colonies and biofilms, and their environment is intimate and complex. The environment provided the substrate and the nutrient, energy, and carbon sources, whereas the metabolic activity of the microbes contributed to the early diagenetic alteration of the volcanic particles, to the binding of the sediment, and to their silicification. The microorganisms were preserved by rapid silicification, with the silica coming partly from hydrothermal sources and partly from pore water enrichment in Si due to the devitrification of the volcanic protoliths (partially mediated by microbial activity).Our multidisciplinary approach to the study of this sample demonstrates the importance of using complementary methods in order to understand the complex microbe/sediment interactions and to be able to relate different types of microbial colonies/biofilms to different microenvironments. The observations and conclusions from this study have important consequences for the methods that need to be used in the search for traces of past life in general and especially in the search for past life on other planets such as Mars. They also form less dense concentrations that include many chainlike associations of coccoids. All colonies are associated with a polymer film (extracellular polymeric substances-EPS) that coats both the organisms and their substrate. Multispecies biofllms formed at a boundary representing a short period of nondeposition. They consisted predominantly of coccoids and EPS but also included common, small filaments tens of micrometers in length and 0.25 mu m in width and rare, short rods 1 mu m in length. Carbon isotopic compositions of about -26 parts per thousand to -30 parts per thousand, measured on individual layers, are compatible with microbial fractionation. The biofilms include possible anoxygenic-photosynthesizing organisms (the filaments), whereas the colonies coating the volcanic clasts probably represent chemolithotrophic organisms. The interaction between the microbes, their colonies and biofilms, and their environment is intimate and complex. The environment provided the substrate and the nutrient, energy, and carbon sources, whereas the metabolic activity of the microbes contributed to the early diagenetic alteration of the volcanic particles, to the binding of the sediment, and to their silicification. The microorganisms were preserved by rapid silicification, with the silica coming partly from hydrothermal sources and partly from pore water enrichment in Si due to the devitrification of the volcanic protoliths (partially mediated by microbial activity).

Hashizume, K ; Sugihara, A ; Pinti, DL ; Orberger, B ; Westall, F  (2006)

Search for primordial biogenic isotopic signatures of nitrogen in Archean sedimentary rocks

Geochimica et Cosmochimica Acta 70 (18) A235-A235 Suppl. S

Orberger, B ; Rouchon, V ; Westall, F ; De Vries, ST ; Wagner, C ; Pinti, DL   (2006)

Protoliths and micro-environments of some Archean Cherts

Processes On The Early Earth 405 133-152 - Editor(s) : Reimold, WU ; Gibson, R

Leach, S ; Bernstein, M ; Westall, F ; Lunine, JI ; Wallis, M ; Matthews, CN ; Ferris, JP  (2006)

Prebiotic materials from on and off the early Earth - Discussion

Philosophical Transactions of The Royal Society B-Biological Sciences 361 (1474) 1700-1702

Orberger, B ; Rouchon, V ; Westall, F ; de Vries, ST ; Pinti, DL ; Wagner, C ; Wirth, R ; Hashizume, K  (2006)

Microfacies and origin of some Archean cherts (Pilbara, Australia)

South Africa Processes On The Early Earth, Field Forum on Processes on the Early Earth (405) 133-156 - Editor(s) : Reimold, WU ; Gibson, RL ; Reimold, WU ; Gibson, RL
Four cherts sampled in the East Pilbara craton (Western Australia) at Marble Bar (Towers Formation), North Pole Dome (Dresser and Apex Basalt Formation), and Kittys Gap (Panorama Formation) were studied for micro- and nanomineralogy and geochemistry to determine their protoliths and to provide new insights on the physico-chemical and biological conditions of their depositional environments. The Marble Bar chert was formed at the interface with a basaltic rock. Hydrothermal fluids leached major and trace elements from the basalt and silicified the protolith of this chert. The elements Fe, Mn, Si, Ca, Mg, REE, An, Pd, Cr, and Ni precipitated as a microbanded iron formation (BIF) under reducing and alkaline conditions. The chert is composed of magnetite, carbonates, and quartz and forms a stromatolite-like structure. Later oxidizing fluids replaced magnetite and carbonates with Fe-Mn oxyhydroxides. They show vermicular microtextures and filamentous nanotextures. Each filament is composed of euhedral nanoscopic hematite. These oxides contain several thousands of ppm of N and C, and measured C/N ratios are similar to those observed in organic matter preserved in marine sediments, thus suggesting an organic activity.Two black cherts from hydrothermal dykes of the North Pole Dome are interpreted as having had a black shale precursor, based on the REE (rare earth elements) and trace metal characteristics. These rocks were probably entrained into the dykes and hydrothermally overprinted. Although these two cherts had the same history, the physico-chemical conditions differed during their formation. The chert from the chert-barite unit of the Dresser Formation was formed under reducing and alkaline conditions. This is clearly indicated by clusters of nanosulfide spherules replacing precursor minerals ; weblike Fe-sulfides intergrown with sphalerite ; As-pyrite and vaesite ; and the presence of carbonates. The black chert from the Apex Basalt Formation was formed under oxidizing conditions, as indicated by clusters of nanospherules of Fe-oxides and a negative Ce anomaly.A black and white laminated chert from Kittys Gap was formed in a shallow marine to subaerial environment, by silicification of a rhyodacitic volcaniclastic rock. This process was accompanied by the development of microbial mats on the sediment surfaces and the formation of microbial colonies around precursor K-feldspars, Ti-bearing biotites, amphiboles, and ghost spherulites. The environment was slightly oxidizing, as indicated by the negative Ce anomaly and the presence of Ti-oxides. The presence of K-bearing phyllosilicates rather than K-feldspars indicates that the environment was also slightly acidic. Elevated Cu and Zn contents in the black laminae point to a limited influence from hydrothermal fluids. The silica probably originated mainly from alteration of the minerals of the volcaniclastic rock due to diagenetic alteration by seawater. Two black cherts from hydrothermal dykes of the North Pole Dome are interpreted as having had a black shale precursor, based on the REE (rare earth elements) and trace metal characteristics. These rocks were probably entrained into the dykes and hydrothermally overprinted. Although these two cherts had the same history, the physico-chemical conditions differed during their formation. The chert from the chert-barite unit of the Dresser Formation was formed under reducing and alkaline conditions. This is clearly indicated by clusters of nanosulfide spherules replacing precursor minerals ; weblike Fe-sulfides intergrown with sphalerite ; As-pyrite and vaesite ; and the presence of carbonates. The black chert from the Apex Basalt Formation was formed under oxidizing conditions, as indicated by clusters of nanospherules of Fe-oxides and a negative Ce anomaly.

Four cherts sampled in the East Pilbara craton (Western Australia) at Marble Bar (Towers Formation), North Pole Dome (Dresser and Apex Basalt Formation), and Kittys Gap (Panorama Formation) were studied for micro- and nanomineralogy and geochemistry to determine their protoliths and to provide new insights on the physico-chemical and biological conditions of their depositional environments. The Marble Bar chert was formed at the interface with a basaltic rock. Hydrothermal fluids leached major and trace elements from the basalt and silicified the protolith of this chert. The elements Fe, Mn, Si, Ca, Mg, REE, An, Pd, Cr, and Ni precipitated as a microbanded iron formation (BIF) under reducing and alkaline conditions. The chert is composed of magnetite, carbonates, and quartz and forms a stromatolite-like structure. Later oxidizing fluids replaced magnetite and carbonates with Fe-Mn oxyhydroxides. They show vermicular microtextures and filamentous nanotextures. Each filament is composed of euhedral nanoscopic hematite. These oxides contain several thousands of ppm of N and C, and measured C/N ratios are similar to those observed in organic matter preserved in marine sediments, thus suggesting an organic activity.Two black cherts from hydrothermal dykes of the North Pole Dome are interpreted as having had a black shale precursor, based on the REE (rare earth elements) and trace metal characteristics. These rocks were probably entrained into the dykes and hydrothermally overprinted. Although these two cherts had the same history, the physico-chemical conditions differed during their formation. The chert from the chert-barite unit of the Dresser Formation was formed under reducing and alkaline conditions. This is clearly indicated by clusters of nanosulfide spherules replacing precursor minerals ; weblike Fe-sulfides intergrown with sphalerite ; As-pyrite and vaesite ; and the presence of carbonates. The black chert from the Apex Basalt Formation was formed under oxidizing conditions, as indicated by clusters of nanospherules of Fe-oxides and a negative Ce anomaly.A black and white laminated chert from Kittys Gap was formed in a shallow marine to subaerial environment, by silicification of a rhyodacitic volcaniclastic rock. This process was accompanied by the development of microbial mats on the sediment surfaces and the formation of microbial colonies around precursor K-feldspars, Ti-bearing biotites, amphiboles, and ghost spherulites. The environment was slightly oxidizing, as indicated by the negative Ce anomaly and the presence of Ti-oxides. The presence of K-bearing phyllosilicates rather than K-feldspars indicates that the environment was also slightly acidic. Elevated Cu and Zn contents in the black laminae point to a limited influence from hydrothermal fluids. The silica probably originated mainly from alteration of the minerals of the volcaniclastic rock due to diagenetic alteration by seawater. Two black cherts from hydrothermal dykes of the North Pole Dome are interpreted as having had a black shale precursor, based on the REE (rare earth elements) and trace metal characteristics. These rocks were probably entrained into the dykes and hydrothermally overprinted. Although these two cherts had the same history, the physico-chemical conditions differed during their formation. The chert from the chert-barite unit of the Dresser Formation was formed under reducing and alkaline conditions. This is clearly indicated by clusters of nanosulfide spherules replacing precursor minerals ; weblike Fe-sulfides intergrown with sphalerite ; As-pyrite and vaesite ; and the presence of carbonates. The black chert from the Apex Basalt Formation was formed under oxidizing conditions, as indicated by clusters of nanospherules of Fe-oxides and a negative Ce anomaly.

Westall, F ; de Ronde, CEJ ; Southam, G ; Grassineau, N ; Colas, M ; Cockell, C ; Lammer, H  (2006)

Implications of a 3.472-3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth

Philosophical Transactions of The Royal Society B-Biological Sciences 361 (1474) 1857-1875
Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5-3.3 Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 mu m filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers.

Modelling suggests that the UV radiation environment of the early Earth, with DNA weighted irradiances of about three orders of magnitude greater than those at present, was hostile to life forms at the surface, unless they lived in specific protected habitats. However, we present empirical evidence that challenges this commonly held view. We describe a well-developed microbial mat that formed on the surface of volcanic littoral sediments in an evaporitic environment in a 3.5-3.3 Ga-old formation from the Barberton greenstone belt. Using a multiscale, multidisciplinary approach designed to strongly test the biogenicity of potential microbial structures, we show that the mat was constructed under flowing water by 0.25 mu m filaments that produced copious quantities of extracellular polymeric substances, representing probably anoxygenic photosynthesizers.

Matthews, CN ; Kasting, JF ; Canfield, DE ; Westall, F  (2006)

Atmospheric composition and climate on the early Earth - Discussion

Philosophical Transactions of The Royal Society of London Series B-Biological Sciences 361 (1474) 1741-1742


2005   Références trouvées : 4

Westall, F  (2005)

The geological context for the origin of life and the mineral signatures of fossil life

Lectures in Astrobiology, Conference on the Lectures in Astrobiology VOL 1 195-226 - Editor(s) : Gargaud, M ; Martin, H ; Reisse, J ; Gargaud, M ; Martin, H ; Reisse, J

Rouchon, V ; Pinti, DL ; Gallien, JP ; Orberger, B ; Daudin, L ; Westall, F  (2005)

NRA analyses of N and C in hydromuscovite aggregates from a 3.5 Ga chert from Kittys Gap, Pilbara, Australia

Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions With Materials and Atoms 231 536-540
Piophile elements nitrogen and carbon were found in hydromuscovite aggregates of an Archean chert from Kittys Gap, W. Australia, hosting probable evidence of life. Their concentrations do not show a linear relationship, as expected,if they where produced by a common organic source. The lack of a linear relationship is related to N and C fractionation at the mineral scale. N occurs in the form of NH4+, tightly retained at the K+ lattice sites, while C could occurs as a dispersed organic phase in hydromuscovite aggregates or in a weakly bounded form.. possibly HCO3-. (c) 2005 Elsevier B.V. All rights reserved.

Piophile elements nitrogen and carbon were found in hydromuscovite aggregates of an Archean chert from Kittys Gap, W. Australia, hosting probable evidence of life. Their concentrations do not show a linear relationship, as expected,if they where produced by a common organic source. The lack of a linear relationship is related to N and C fractionation at the mineral scale. N occurs in the form of NH4+, tightly retained at the K+ lattice sites, while C could occurs as a dispersed organic phase in hydromuscovite aggregates or in a weakly bounded form.. possibly HCO3-. (c) 2005 Elsevier B.V. All rights reserved.

Westall, F  (2005)

Life on the early earth : A sedimentary view

Science 308 (5720) 366-367

Westall, F  (2005)

Early Life on Earth and Analogies to Mars

Water On Mars and Life. Advances in Astrobiology and Biogeophysics 45-64 - Editor(s) : Tokano, T


2004   Références trouvées : 9

Westall, F., Hofmann, B. & Brack, A.   (2004)

Searching for fossil microbial biofilms on Mars : a case study using a 3.46 billion-year-old example from the Pilbara in Australia.

ESA Spec. Pub. 545, 37-40

Hofmann, BA ; Westall, F ; Josset, JL ; Thomas, N ; Brack, A  (2004)

The search for in situ signs of past life on Mars

Geochimica et Cosmochimica Acta 68 (11) A805-A805 Suppl. S

Schelble, RT ; Westall, F ; Allen, CC  (2004)

Similar to 1.8 Ga iron-mineralized microblota from the Gunflint Iron Formation, Ontcario, Canada : implications for Mars

Advances in Space Research 33, 1268-1273
A similar to1.8 Ga banded-iron stromatolite from the Mink Mountain locality (PPRG 336) of the Gunflint Iron Formation, Ontario, Canada was investigated as an analogue to Martian hematite deposits which have the potential to contain fossilized Martian life. The stromatolitic sample was primarily composed of quartz (SiO2) with fractional amounts of hematite (Fe2O3), greenalite ((Fe,Mg)(3)Si2O5(OH)(2)), and minor amounts of stilpnomelane (K(Fe2+,Mg,Fe3+, Al)(8)(Si,Al)(12)(O,OH)(27) . 2H(2)O). Iron-bearing minerals were present within thin, discontinuous bands aligned roughly parallel. Octahedral pseudomorphs of hematite after magnetite occurred as localized elongate clusters, as well as on the outer rims of detrital oncolitic structures. Microcrystalline greenalite was present as a clay occurring in layers subparallel to the stromatolitic layering. Greenalite was observed in both the silica- and iron-rich layers, as well as within oncolitic structures. Irregular aggregates of radiating stilpnomelane needles extended into the silica matrix.

A similar to1.8 Ga banded-iron stromatolite from the Mink Mountain locality (PPRG 336) of the Gunflint Iron Formation, Ontario, Canada was investigated as an analogue to Martian hematite deposits which have the potential to contain fossilized Martian life. The stromatolitic sample was primarily composed of quartz (SiO2) with fractional amounts of hematite (Fe2O3), greenalite ((Fe,Mg)(3)Si2O5(OH)(2)), and minor amounts of stilpnomelane (K(Fe2+,Mg,Fe3+, Al)(8)(Si,Al)(12)(O,OH)(27) . 2H(2)O). Iron-bearing minerals were present within thin, discontinuous bands aligned roughly parallel. Octahedral pseudomorphs of hematite after magnetite occurred as localized elongate clusters, as well as on the outer rims of detrital oncolitic structures. Microcrystalline greenalite was present as a clay occurring in layers subparallel to the stromatolitic layering. Greenalite was observed in both the silica- and iron-rich layers, as well as within oncolitic structures. Irregular aggregates of radiating stilpnomelane needles extended into the silica matrix.

Allen, CC ; Probst, LW ; Flood, BE ; Longazo, TG ; Schelble, RT ; Westall, F  (2004)

Meridiani Planum hematite deposit and the search for evidence of life on Mars - iron mineralization of microorganisms in rock varnish

Icarus 171 (1) 20-30
The extensive hematite deposit in Meridiani Planum was selected as the landing site for the Mars Exploration Rover Opportunity because the site may have been favorable to the preservation of evidence of possible prebiotic or biotic processes. One of the proposed mechanisms for formation of this deposit involves Surface weathering and coatings, exemplified on Earth by rock varnish. Microbial life, including microcolonial fungi and bacteria, is documented in rock varnish matrices from the southwestern United States and Australia. Limited evidence of this life is preserved as cells and cell molds mineralized by iron oxides and hydroxides, as well as by manganese oxides. Such mineralization of microbial cells has previously been demonstrated experimentally and documented in banded iron formations, hot spring deposits, and ferricrete soils. These types of deposits are examples of the four "water-rock interaction" scenarios proposed for formation of the hematite deposit on Mars. The instrument suite on Opportunity has the capability to distinguish among these proposed formation scenarios and, possibly, to detect traces that are suggestive of preserved martian microbiota. However, the confirmation of microfossils or preserved biosignatures will likely require the return of samples to terrestrial laboratories. Published by Elsevier Inc.

The extensive hematite deposit in Meridiani Planum was selected as the landing site for the Mars Exploration Rover Opportunity because the site may have been favorable to the preservation of evidence of possible prebiotic or biotic processes. One of the proposed mechanisms for formation of this deposit involves Surface weathering and coatings, exemplified on Earth by rock varnish. Microbial life, including microcolonial fungi and bacteria, is documented in rock varnish matrices from the southwestern United States and Australia. Limited evidence of this life is preserved as cells and cell molds mineralized by iron oxides and hydroxides, as well as by manganese oxides. Such mineralization of microbial cells has previously been demonstrated experimentally and documented in banded iron formations, hot spring deposits, and ferricrete soils. These types of deposits are examples of the four "water-rock interaction" scenarios proposed for formation of the hematite deposit on Mars. The instrument suite on Opportunity has the capability to distinguish among these proposed formation scenarios and, possibly, to detect traces that are suggestive of preserved martian microbiota. However, the confirmation of microfossils or preserved biosignatures will likely require the return of samples to terrestrial laboratories. Published by Elsevier Inc.

Westall, F ; Drake, F   (2004)

Is life an unavoidable planetary phenomenon given the right conditions ?

Earth System Analysis For Sustainability, Dahlem Workshop Report 91 - Editor(s) : Schellnhuber, HJ et al.

Altermann, W ; Schopf, JW ; Kazmierczak, J ; Kempe, S ; Westall, F  (2004)

Evolution of life and precambrian bio-geology

Precambrian Earth : Tempos and Events 12 513-591 - Editor(s) : Eriksson, PG ; Altermann, W ; Nelson, DR ; Mueller, WU ; Catuneanu, O ; Eriksson, PG ; Altermann, W ; Nelson, DR ; Mueller, WU ; Catuneanu, O

Westall, F  (2004)

Early life on Earth : The ancient fossil record

Astrobiology : Future Perspectives, Workshop on Astrobiology 305 287-316 - Editor(s) : Ehrenfreund, P ; Irvine, W ; Owen, T ; Becker, L ; Blank, J ; Brucato, J ; Colangeli, L ; Derenne, S ; Dutrey, A ; Despois, D ; Lazcano, A ; Robert, F ; Ehrenfreund, P ; Irvine, W ; Owen, T ; Becker, L ; Blank, J ; Brucato, J ; Colangeli, L ; Derenne, S ; Dutrey, A ; Despois, D ; Lazcano, A ; Robert, F
The evidence for early life and its initial evolution on Earth is linked intimately with the geological evolution of the early Earth. The environment of the early Earth would be considered extreme by modem standards : hot (50-80degreesC), volcanically and hydrothermally active.. anoxic. high UV flux. and a high flux of extraterrestrial impacts. Habitats for life were more limited until continent-building processes resulted in the formation of stable cratons with wide, shallow, continental platforms in the Mid-Late Archaean. Unfortunately there are no records of the first appearance of life and the earliest isotopic indications of the existence of organisms fractionating carbon in similar to3.8 Ga rocks from the Isua greenstone belt in Greenland are tenuous. Well-preserved microfossils and microbial trials (in the form of tabular and domical stromatolites) occur in 3.5-3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Africa) and Pilbara (Australia) greenstone belts. They document life forms that show a relatively advanced level of evolution. Microfossil morphology includes filamentous, coccoid. rod and vibroid shapes. Colonial microorganisms formed biofilms and microbial mats at the surfaces of volcaniclastic and chemical sediments. some of which created (small) macroscopic microbialites such as stromatolites. Anoxygenic, photosynthesis may already have developed. Carbon. nitrogen and sulphur isotopes ratios are in the range of those for organisms with anaerobic metabolisms, such as methanogenesis, sulphate reduction and photosynthesis. Life was apparently distributed widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in the early Archaean was restricted owing to the limited amount of energy that could be produced by anaerobic metabolisms. Microfossils resembling oxygenic photosyrithesisers. such as cyanobacteria, probably first occurred in the later part of the Mid Archaean (similar to2.9 Ga), concurrent with the tectonic development of suitable shallow shelf environments. The development of an oxygenic metabolism allowed a considerable increase in biomass and increased interaction with the geological environment. Well-preserved microfossils and microbial trials (in the form of tabular and domical stromatolites) occur in 3.5-3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Africa) and Pilbara (Australia) greenstone belts. They document life forms that show a relatively advanced level of evolution. Microfossil morphology includes filamentous, coccoid. rod and vibroid shapes. Colonial microorganisms formed biofilms and microbial mats at the surfaces of volcaniclastic and chemical sediments. some of which created (small) macroscopic microbialites such as stromatolites. Anoxygenic, photosynthesis may already have developed. Carbon. nitrogen and sulphur isotopes ratios are in the range of those for organisms with anaerobic metabolisms, such as methanogenesis, sulphate reduction and photosynthesis. Life was apparently distributed widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in the early Archaean was restricted owing to the limited amount of energy that could be produced by anaerobic metabolisms. Microfossils resembling oxygenic photosyrithesisers. such as cyanobacteria, probably first occurred in the later part of the Mid Archaean (similar to2.9 Ga), concurrent with the tectonic development of suitable shallow shelf environments. The development of an oxygenic metabolism allowed a considerable increase in biomass and increased interaction with the geological environment.

The evidence for early life and its initial evolution on Earth is linked intimately with the geological evolution of the early Earth. The environment of the early Earth would be considered extreme by modem standards : hot (50-80degreesC), volcanically and hydrothermally active.. anoxic. high UV flux. and a high flux of extraterrestrial impacts. Habitats for life were more limited until continent-building processes resulted in the formation of stable cratons with wide, shallow, continental platforms in the Mid-Late Archaean. Unfortunately there are no records of the first appearance of life and the earliest isotopic indications of the existence of organisms fractionating carbon in similar to3.8 Ga rocks from the Isua greenstone belt in Greenland are tenuous. Well-preserved microfossils and microbial trials (in the form of tabular and domical stromatolites) occur in 3.5-3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Africa) and Pilbara (Australia) greenstone belts. They document life forms that show a relatively advanced level of evolution. Microfossil morphology includes filamentous, coccoid. rod and vibroid shapes. Colonial microorganisms formed biofilms and microbial mats at the surfaces of volcaniclastic and chemical sediments. some of which created (small) macroscopic microbialites such as stromatolites. Anoxygenic, photosynthesis may already have developed. Carbon. nitrogen and sulphur isotopes ratios are in the range of those for organisms with anaerobic metabolisms, such as methanogenesis, sulphate reduction and photosynthesis. Life was apparently distributed widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in the early Archaean was restricted owing to the limited amount of energy that could be produced by anaerobic metabolisms. Microfossils resembling oxygenic photosyrithesisers. such as cyanobacteria, probably first occurred in the later part of the Mid Archaean (similar to2.9 Ga), concurrent with the tectonic development of suitable shallow shelf environments. The development of an oxygenic metabolism allowed a considerable increase in biomass and increased interaction with the geological environment. Well-preserved microfossils and microbial trials (in the form of tabular and domical stromatolites) occur in 3.5-3.3 Ga, Early Archaean, sedimentary formations from the Barberton (South Africa) and Pilbara (Australia) greenstone belts. They document life forms that show a relatively advanced level of evolution. Microfossil morphology includes filamentous, coccoid. rod and vibroid shapes. Colonial microorganisms formed biofilms and microbial mats at the surfaces of volcaniclastic and chemical sediments. some of which created (small) macroscopic microbialites such as stromatolites. Anoxygenic, photosynthesis may already have developed. Carbon. nitrogen and sulphur isotopes ratios are in the range of those for organisms with anaerobic metabolisms, such as methanogenesis, sulphate reduction and photosynthesis. Life was apparently distributed widely in shallow-water to littoral environments, including exposed, evaporitic basins and regions of hydrothermal activity. Biomass in the early Archaean was restricted owing to the limited amount of energy that could be produced by anaerobic metabolisms. Microfossils resembling oxygenic photosyrithesisers. such as cyanobacteria, probably first occurred in the later part of the Mid Archaean (similar to2.9 Ga), concurrent with the tectonic development of suitable shallow shelf environments. The development of an oxygenic metabolism allowed a considerable increase in biomass and increased interaction with the geological environment.

Westall, F ; Rouzaud, JN  (2004)

Carbonaceous microfossils in Early Archaean cherts

Geochimica et Cosmochimica Acta 68 (11) A239-A239 Suppl. S

Rouchon, V ; Orberger, B ; Westall, F ; Gallien, JP ; Pinti, DL  (2004)

Archean protominerals and their evolution during chert formation : Kittys Gap, Pilbara Complex

Geochimica et Cosmochimica Acta 68 (11) A751-A751 Suppl. S


2003   Références trouvées : 12

Westall, F. & Drake, F.   (2003)

Is life an unavoidable planetary phenomenon given the right conditions ?

Earth System Analysis For Sustainability, Dahlem Workshop Report 91 - Editor(s) : Schellnhuber, HJ et al., 53-72

Westall, F  (2003)

Stephen Jay Gould, the prokaryotes and their evolution in a geological context.

Comptes Rendus Palevol 2 (6-7) 485-501
Stephen Jay Gould (Full. House, Harmony Books, New York, 1996) emphasised the importance of the bacterial (prokaryote) world right from the beginnings of the history of life, up to the present day and, even into the future. Moreover, he suggested that the various forms of life on the planet today represent a diversification, or increase in complexity, from these simple organisms, rather than a directed evolution towards complexity. On the scale of evolution, the oldest fossils, dating back to almost 3.5 billion years ago, comprise simple unicellular organisms, i.e. prokaryotes that occur adjacent to the left wall of complexity. As far as can be ascertained from the fossil record, this early life had already exploited all the possible ramifications of diversification within an anaerobic environment and within the habitats available on the early Earth. Further evolution from this stage involved the development of organisms undertaking oxygenic photosynthesis that opportunistically invaded the newly formed, sunlight-bathed, shallow water continental platforms. (C) 2003 Academie des sciences. Publie par Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.

Stephen Jay Gould (Full. House, Harmony Books, New York, 1996) emphasised the importance of the bacterial (prokaryote) world right from the beginnings of the history of life, up to the present day and, even into the future. Moreover, he suggested that the various forms of life on the planet today represent a diversification, or increase in complexity, from these simple organisms, rather than a directed evolution towards complexity. On the scale of evolution, the oldest fossils, dating back to almost 3.5 billion years ago, comprise simple unicellular organisms, i.e. prokaryotes that occur adjacent to the left wall of complexity. As far as can be ascertained from the fossil record, this early life had already exploited all the possible ramifications of diversification within an anaerobic environment and within the habitats available on the early Earth. Further evolution from this stage involved the development of organisms undertaking oxygenic photosynthesis that opportunistically invaded the newly formed, sunlight-bathed, shallow water continental platforms. (C) 2003 Academie des sciences. Publie par Editions scientifiques et medicales Elsevier SAS. Tous droits reserves.

Westall, F  (2003)

Precambrian Geology and Exobiology

Tempos and Events in Precambrian Time, Developments in Precambrian Geology 575-586 - Editor(s) : Erikssen, P et al

Toporski, J ; Steele, A ; McKay, DS ; Westall, F ; Avci, R ; Schweitzer, M ; Pincus, S ; Garcia Parro, V  (2003)

New strategies for life detection and their implication for astrobiological research and Solar System exploration

Frontiers of Life 267-271 - Editor(s) : Celnikier, LM ; Trân Than Vân, J

Lenton, TM ; Caldeira, KG ; Franck, SA ; Horneck, G ; Jolly, A ; Rabbow, E ; Schellnhuber, HJ ; Száthmary, E ; Westall, F ; Zavarzin, GA ; Zimmermann-Timm, H   (2003)

Long-term geosphere-biosphere coevolution and astrobiology

Earth System Analysis For Sustainability 111-139. - Editor(s) : Clark, WC ; Crutzen, PJ ; Schellnhuber, HJ

Westall, F ; Walsh, MM ; Steele, A ; Toporski, J ; De Ronde, C ; De Wit, M   (2003)

Life in the Solar System

Frontiers of Life 173-184 - Editor(s) : Celnikier, LM ; Trân Than Vân, J

Westall, F ; Walsh, MM ; Toporski, J ; Steele, A  (2003)

Fossil biofilms and the search for life on Mars

Fossil and Recent Biofilms 447-465 - Editor(s) : Krumbein, W ; Paterson, DM ; Zavarzin, GA ; Krumbein, WE ; Paterson, DM ; Zavarzin, GA

Westall, F ; Folk, RL  (2003)

Exogenous carbonaceous microstructures in Early Archaean cherts and BIFs from the Isua Greenstone Belt : implications for the search for life in ancient rocks

Precambrian Research 126 (3-4) 313-330
The microstructure of HF-etched samples of Early Archaean banded iron formations (BIFs) and cherts from the >3.7 b.y.-old Isua Greenstone Belt (southwestern Greenland) was investigated using high resolution scanning electron microscopy equipped with an electron diffraction system, capable of analysing light elements. The rocks contain both endogenous (of internal origin) and exogenous (of external origin) carbonaceous microstructures. The former consist of inclusions of graphite and, possibly, small, amorphous carbonaceous particles, both embedded in metacherts (however, further in situ TEM studies are needed to verify the endogeneity of the amorphous particles). Moreover, these rocks also contain endolithic microorganisms (i.e. inhabiting cracks in rocks), as well as undifferentiated carbonaceous matter, that occur in fractures and cracks between grains.

The microstructure of HF-etched samples of Early Archaean banded iron formations (BIFs) and cherts from the >3.7 b.y.-old Isua Greenstone Belt (southwestern Greenland) was investigated using high resolution scanning electron microscopy equipped with an electron diffraction system, capable of analysing light elements. The rocks contain both endogenous (of internal origin) and exogenous (of external origin) carbonaceous microstructures. The former consist of inclusions of graphite and, possibly, small, amorphous carbonaceous particles, both embedded in metacherts (however, further in situ TEM studies are needed to verify the endogeneity of the amorphous particles). Moreover, these rocks also contain endolithic microorganisms (i.e. inhabiting cracks in rocks), as well as undifferentiated carbonaceous matter, that occur in fractures and cracks between grains.

Toporski, J ; Steele, A ; McKay, DS ; Westall, F  (2003)

Bacterial biofilms in astrobiology : The importance of life detection

Fossil and Recent Biofilms 429-445 - Editor(s) : Krumbein, WE ; Paterson, DM ; Zavarzin, GA ; Krumbein, WE ; Paterson, DM ; Zavarzin, GA

Walsh, MM ; Westall, F  (2003)

Archean biofilms preserved in the Swaziland Supergroup, South Africa

Fossil and Recent Biofilms 307-316 - Editor(s) : Krumbein, W ; Paterson, DM ; Zavarzin, GA ; Krumbein, WE ; Paterson, DM ; Zavarzin, GA

Westall, F  (2003)

An early and rapid colonisation of habitable niches on Earth ?

Geochimica et Cosmochimica Acta 67 (18) A530-A530 Suppl. 1

Schelble, R ; Westall, F ; Allen, C  (2003)

 1.8 Ga iron-mineralised microbiota from the Gunflint Iron Formation, Ontario, Canada : implications for Mars

Advances in Space Research 33-1268-1273


2002   Références trouvées : 4

Toporski, JKW ; Steele, A ; Westall, F ; Thomas-Keprta, KL ; McKay, DS  (2002)

Winner of the 2001 Gerald A. Soffen Memorial Award - The simulated silicification of bacteria - New clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils

Astrobiology 2 (1) 1-26
Evidence of microbial, life on Earth has been found in siliceous rock formations throughout the geological and fossil record. To understand the mechanisms of silicification and thus improve our search patterns for evidence of fossil microbial life in rocks, a series of controlled laboratory experiments were designed to simulate the silicification of microorganisms. The bacterial strains Pseudomonas fluorescens and Desulphovibrio indonensis were exposed to silicifying media. The experiments were designed to determine how exposure time to silicifying solutions and to silicifying solutions of different Si concentration affect the fossilization of microbial biofilms. The silicified biofilms were analyzed using transmission electron microscopy (TEM) in combination with energy-dispersive spectroscopy. Both bacterial species showed evidence of silicification after 24 h in 1,000 ppm silica solution, although D. indonensis was less prone to silicification.

Evidence of microbial, life on Earth has been found in siliceous rock formations throughout the geological and fossil record. To understand the mechanisms of silicification and thus improve our search patterns for evidence of fossil microbial life in rocks, a series of controlled laboratory experiments were designed to simulate the silicification of microorganisms. The bacterial strains Pseudomonas fluorescens and Desulphovibrio indonensis were exposed to silicifying media. The experiments were designed to determine how exposure time to silicifying solutions and to silicifying solutions of different Si concentration affect the fossilization of microbial biofilms. The silicified biofilms were analyzed using transmission electron microscopy (TEM) in combination with energy-dispersive spectroscopy. Both bacterial species showed evidence of silicification after 24 h in 1,000 ppm silica solution, although D. indonensis was less prone to silicification.

Toporski, JKW ; Steele, A ; Westall, F ; Avci, R ; Martill, DM ; McKay, DS  (2002)

Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany

Geochimica et Cosmochimica Acta 66 (10) 1773-1791
The fossilised soft tissues of a tadpole and an associated coprolitic structure from the organic-rich volcanoclastic lacustrine Upper Oligocene Enspel sediments (Germany) were investigated using high-resolution imaging techniques and nondestructive in situ surface analysis. Total organic carbon analysis of the coprolite and the sediment revealed values of 28.9 and 8.9% respectively. The soft tissues from the tadpole and the coprolite were found to be composed of 0.5 to 1 mum-sized spheres and rod shapes. These features are interpreted as the fossil remains of bacterial biofilms consisting probably of heterotrophic bacteria and fossilised extracellular polymeric substances.

The fossilised soft tissues of a tadpole and an associated coprolitic structure from the organic-rich volcanoclastic lacustrine Upper Oligocene Enspel sediments (Germany) were investigated using high-resolution imaging techniques and nondestructive in situ surface analysis. Total organic carbon analysis of the coprolite and the sediment revealed values of 28.9 and 8.9% respectively. The soft tissues from the tadpole and the coprolite were found to be composed of 0.5 to 1 mum-sized spheres and rod shapes. These features are interpreted as the fossil remains of bacterial biofilms consisting probably of heterotrophic bacteria and fossilised extracellular polymeric substances.

Westall, F ; Marchesini, D  (2002)

Early Archaean microbial biofilms and their influence on volcaniclastic and chemical sedimentation

Geochimica et Cosmochimica Acta 66 (15a) A830-A830 Suppl. 1

Toporski, J ; Steele, A ; Westall, F ; Thomas-Keprta, K ; McKay, DS  (2002)

Bacterial silicification - an experimental approach

Geochimica et Cosmochimica Acta 66 (15a) A781-A781 Suppl. 1


2001   Références trouvées : 4

Westall, F ; de Wit, MJ ; Dann, J ; van der Gaast, S ; de Ronde, CEJ ; Gerneke, D  (2001)

Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa

Precambrian Research 106 (1-2) 93-116
SEM imaging of HF-etched, 3.3-3.5 Ga cherts from the Onverwacht Group, South Africa reveals small spherical (1 mum diameter) and rod-shaped structures (2-3.8 mum in length) which are interpreted as probable fossil coccoid and bacillar bacteria (prokaryotes), respectively, preserved by mineral replacement. Other, possibly biogenic structures include smaller rod-shaped bacteriomorphs (

SEM imaging of HF-etched, 3.3-3.5 Ga cherts from the Onverwacht Group, South Africa reveals small spherical (1 mum diameter) and rod-shaped structures (2-3.8 mum in length) which are interpreted as probable fossil coccoid and bacillar bacteria (prokaryotes), respectively, preserved by mineral replacement. Other, possibly biogenic structures include smaller rod-shaped bacteriomorphs (

Toporski, JKW ; Westall, F ; Thomas-Keprta, KA ; Steele, A ; Mckay, DS   (2001)

The simulated silicification of bacteria - new clues to the modes and timing of bacterial preservation and implications for the search for extraterrestrial microfossils

Astrobiology 2 1-25

Gibson, EK ; McKay, DS ; Thomas-Keprta, KL ; Wentworth, SJ ; Westall, F ; Steele, A ; Romanek, CS ; Bell, MS ; Toporski, J  (2001)

Life on Mars : evaluation of the evidence within Martian meteorites ALH84001, Nakhla, and Shergotty

Precambrian Research 106 (1-2) 15-34
Analyses both support and are in opposition to the hypothesis that the Martian meteorite ALH84001 contains evidence for possible biogenic activity on Mars. New observations in two additional Martian meteorites, Nakhla (1.3 Ga old) and Shergotty (300-165 Ma old) indicate possible biogenic features. Features in the three Martian meteorites compare favorably with the accepted criteria for terrestrial microfossils and evidence for early life on the Earth. There is strong evidence for the presence of indigenous reduced carbon, biogenic magnetite, and the low-temperature formation of carbonate globules. The morphological similarities between terrestrial microfossils, biofilms, and the features found in the three Martian meteorites are intriguing but have not been conclusively proven. Every investigation must recognize the possibility of terrestrial contamination of the meteorites, whether or not the meteorites are Martian. The search for evidence of ancient life in Martian meteorites has emphasized the difficulties confronting the scientific community with the respect to the positive identification of evidence of past biogenic activity. (C) 2001 Elsevier Science B.V. All rights reserved.

Analyses both support and are in opposition to the hypothesis that the Martian meteorite ALH84001 contains evidence for possible biogenic activity on Mars. New observations in two additional Martian meteorites, Nakhla (1.3 Ga old) and Shergotty (300-165 Ma old) indicate possible biogenic features. Features in the three Martian meteorites compare favorably with the accepted criteria for terrestrial microfossils and evidence for early life on the Earth. There is strong evidence for the presence of indigenous reduced carbon, biogenic magnetite, and the low-temperature formation of carbonate globules. The morphological similarities between terrestrial microfossils, biofilms, and the features found in the three Martian meteorites are intriguing but have not been conclusively proven. Every investigation must recognize the possibility of terrestrial contamination of the meteorites, whether or not the meteorites are Martian. The search for evidence of ancient life in Martian meteorites has emphasized the difficulties confronting the scientific community with the respect to the positive identification of evidence of past biogenic activity. (C) 2001 Elsevier Science B.V. All rights reserved.

Allen, Carlton C. ; Westall, Frances ; Schelble, Rachel T  (2001)

Importance of a martian hematite site for astrobiology.

Astrobiology 1 (1) 111-123
Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (a-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems.

Defining locations where conditions may have been favorable for life is a key objective for the exploration of Mars. Of prime importance are sites where conditions may have been favorable for the preservation of evidence of prebiotic or biotic processes. Areas displaying significant concentrations of the mineral hematite (a-Fe2O3), recently identified by thermal emission spectrometry, may have significance in the search for evidence of extraterrestrial life. Since iron oxides can form as aqueous mineral precipitates, the potential exists to preserve microscopic evidence of life in iron oxide-depositing ecosystems.


2000   Références trouvées : 7

Gibson, EK ; McKay, DS ; Thomas-Keprta, K ; Westall, F ; Clemett, SJ  (2000)

What is the status of the hypothesis of evidence of biogenic activity within martian meteorites : Alive or dead ?

Meteoritics & Planetary Science 35 A60-A60 Suppl. S

Westall, F ; Walsh, MM   (2000)

The diversity of fossil microorganisms in Archaean-age rocks

Microbial Diversity 15-27 - Editor(s) : Seckbach, J

Westall, F ; Steele, A ; Toporski, J ; Walsh, M ; Allen, C ; Guidry, S ; McKay, D ; Gibson, E ; Chafetz, H  (2000)

Polymeric substances and biofilms as biomarkers in terrestrial materials : Implications for extraterrestrial samples

Journal of Geophysical Research-Planets 105 (E10) 24511-24527
Organic polymeric substances are a fundamental component of microbial biofilms. Microorganisms, especially bacteria, secrete extracellular polymeric substances (EPS) to form slime layers in which they reproduce. In the sedimentary environment, biofilms commonly contain the products of degraded bacteria as well as allochthonous and autochthonous mineral components. They are complex structures which serve as protection for the colonies of microorganisms living in them and also act as nutrient traps. Biofilms are almost ubiquitous wherever there is an interface and moisture (liquid/liquid, liquid/solid, liquid/gas, solid/gas). In sedimentary rocks they are commonly recognized as stromatolites.

Organic polymeric substances are a fundamental component of microbial biofilms. Microorganisms, especially bacteria, secrete extracellular polymeric substances (EPS) to form slime layers in which they reproduce. In the sedimentary environment, biofilms commonly contain the products of degraded bacteria as well as allochthonous and autochthonous mineral components. They are complex structures which serve as protection for the colonies of microorganisms living in them and also act as nutrient traps. Biofilms are almost ubiquitous wherever there is an interface and moisture (liquid/liquid, liquid/solid, liquid/gas, solid/gas). In sedimentary rocks they are commonly recognized as stromatolites.

Allen, CC ; Albert, FG ; Chafetz, HS ; Combie, J ; Graham, CR ; Kieft, TL ; Kivett, SJ ; McKay, DS ; Steele, A ; Taunton, AE ; Taylor, MR ; Thomas-Keprta, KL ; Westall, F  (2000)

Microscopic physical biomarkers in carbonate hot springs : Implications in the search for life on Mars

Icarus 147 (1) 49-67
Physical evidence of life (physical biomarkers) from the deposits of carbonate hot springs were documented at the scale of microorganisms-submillimeter to submicrometer. The four moderate-temperature (57 to 72 degrees C), neutral pH springs reported on in this study, support diverse communities of bacteria adapted to specific physical and chemical conditions. Some of the microbes coexist with travertine deposits in endolithic communities. In other cases, the microbes are rapidly coated and destroyed by precipitates but leave distinctive mineral fabrics. Some microbes adapted to carbonate hot springs produce an extracellular polymeric substance which forms a three-dimensional matrix with living cells and cell remains, known as a biofilm.

Physical evidence of life (physical biomarkers) from the deposits of carbonate hot springs were documented at the scale of microorganisms-submillimeter to submicrometer. The four moderate-temperature (57 to 72 degrees C), neutral pH springs reported on in this study, support diverse communities of bacteria adapted to specific physical and chemical conditions. Some of the microbes coexist with travertine deposits in endolithic communities. In other cases, the microbes are rapidly coated and destroyed by precipitates but leave distinctive mineral fabrics. Some microbes adapted to carbonate hot springs produce an extracellular polymeric substance which forms a three-dimensional matrix with living cells and cell remains, known as a biofilm.

McKinley, JP ; Stevens, TO ; Westall, F  (2000)

Microfossils and paleoenvironments in deep subsurface basalt samples

Geomicrobiology Journal 17 (1) 43-54
Secondary minerals near and within fractures in Columbia River basalts contain objects the size and shape of bacteria. These bacteriomorphs are most commonly rods or ellipses but also include cocci and diplococci forms, vibrioids and club-shaped rods, and associated pairs of objects that suggest cellular division by binary fission. Secondary minerals associated with, enclosing, and making up bacteriomorphs include iron oxyhydroxides, sulfides, and smectites containing ferrous iron. The secondary minerals are intimately intermixed with kerogen. Moreover ; bacteriomorphs in the pyrite consist of kerogen. Careful consideration of mineral associations, the occurrence of organic carbon, and the spatial context of bacteriomorphs indicate that they are microfossils. The association of microfossils with minerals formed in reducing environments suggests an ancient ecosystem dominated at least. in part by sulfate-reducing bacteria, similar to communities within these basalts today.

Secondary minerals near and within fractures in Columbia River basalts contain objects the size and shape of bacteria. These bacteriomorphs are most commonly rods or ellipses but also include cocci and diplococci forms, vibrioids and club-shaped rods, and associated pairs of objects that suggest cellular division by binary fission. Secondary minerals associated with, enclosing, and making up bacteriomorphs include iron oxyhydroxides, sulfides, and smectites containing ferrous iron. The secondary minerals are intimately intermixed with kerogen. Moreover ; bacteriomorphs in the pyrite consist of kerogen. Careful consideration of mineral associations, the occurrence of organic carbon, and the spatial context of bacteriomorphs indicate that they are microfossils. The association of microfossils with minerals formed in reducing environments suggests an ancient ecosystem dominated at least. in part by sulfate-reducing bacteria, similar to communities within these basalts today.

Seckbach, J ; Westall, F ; Chela-Flores, J  (2000)

Introduction to astrobiology : origin, evolution, distribution and destiny of life in the universe

Microbial Diversity - Editor(s) : Seckbach, J

Westall, F ; Brack, A ; Hofmann, B ; Horneck, G ; Kurat, G ; Maxwell, J ; Ori, GG ; Pillinger, C ; Raulin, F ; Thamas, N ; Fitton, B ; Clancy, P ; Prieur, D ; Vassaux, D  (2000)

An ESA study for the search for life on Mars

Planetary and Space Science 48 (2-3) 181-202
Similarities in the early histories of Mars and Earth suggest the possibility that life may have arisen on Mars as it did on Earth. If this were the case, early deterioration of the environment on Mars (loss of surface water, decrease in temperature) may have inhibited further evolution of life. Thus, life on Mars would probably be similar to the simplest form of life on Earth, the prokaryotes. We present a hypothetical strategy to search for life on Mars consisting of (i) identifying a suitable landing site with good exobiological potential, and (ii) searching for morphological and biogeochemical signatures of extinct and extant life on the surface, in the regolith subsurface, and within rocks. The platform to be used in this theoretical exercise is an integrated, multi-user instrument package, distributed between a lander and rover, which will observe and analyse surface and subsurface samples to obtain the following information : 1. environmental data concerning the surface geology and mineralogy, UV radiation and oxidation processes ; 2. macroscopic to microscopic morphological evidence of life ; 3. biogeochemistry indicative of the presence of extinct or extant life ; 4. niches for extant life. Lastly, the rationale for human exploration of Mars will be addressed. (C) 2000 Elsevier Science Ltd. All rights reserved.

Similarities in the early histories of Mars and Earth suggest the possibility that life may have arisen on Mars as it did on Earth. If this were the case, early deterioration of the environment on Mars (loss of surface water, decrease in temperature) may have inhibited further evolution of life. Thus, life on Mars would probably be similar to the simplest form of life on Earth, the prokaryotes. We present a hypothetical strategy to search for life on Mars consisting of (i) identifying a suitable landing site with good exobiological potential, and (ii) searching for morphological and biogeochemical signatures of extinct and extant life on the surface, in the regolith subsurface, and within rocks. The platform to be used in this theoretical exercise is an integrated, multi-user instrument package, distributed between a lander and rover, which will observe and analyse surface and subsurface samples to obtain the following information : 1. environmental data concerning the surface geology and mineralogy, UV radiation and oxidation processes ; 2. macroscopic to microscopic morphological evidence of life ; 3. biogeochemistry indicative of the presence of extinct or extant life ; 4. niches for extant life. Lastly, the rationale for human exploration of Mars will be addressed. (C) 2000 Elsevier Science Ltd. All rights reserved.


1999   Références trouvées : 5

Westall, F  (1999)

The nature of fossil bacteria : A guide to the search for extraterrestrial life

Journal of Geophysical Research-Planets 104 (E7) 16437-16451
In an attempt to establish reliable criteria for the identification of potential fossil life in extraterrestrial materials, the fossilizable characteristics of bacteria, namely, size, shape, cell wall texture, association, and colony formation, are described, and an overview is given of the ways in which fossil bacteria are preserved las compressions in fine-grained sediments ; preservation in amber ; permineralized by silica ; replacement by minerals such (as silica, pyrite, Fe/Mn oxides, calcite, phosphate, and siderite ; or as molds in minerals). The problem of confounding minerally replaced bacteria with non biological structures having a bacterial morphology is addressed. Examples of fossilized bacteria from the Early Archaean through to the Recent are used to illustrate the various modes of preservation and the morphology of fossil bacteria.

In an attempt to establish reliable criteria for the identification of potential fossil life in extraterrestrial materials, the fossilizable characteristics of bacteria, namely, size, shape, cell wall texture, association, and colony formation, are described, and an overview is given of the ways in which fossil bacteria are preserved las compressions in fine-grained sediments ; preservation in amber ; permineralized by silica ; replacement by minerals such (as silica, pyrite, Fe/Mn oxides, calcite, phosphate, and siderite ; or as molds in minerals). The problem of confounding minerally replaced bacteria with non biological structures having a bacterial morphology is addressed. Examples of fossilized bacteria from the Early Archaean through to the Recent are used to illustrate the various modes of preservation and the morphology of fossil bacteria.

Barbieri, R ; D’Onofrio, S ; Melis, R ; Westall, F  (1999)

R-Selected benthic foraminifera with associated bacterial colonies in Upper Pleistocene sediments of the Ross Sea (Antarctica) : implications for calcium carbonate preservation

Palaeogeography Palaeoclimatology Palaeoecology 149 (1-4) 41-57
Investigations on foraminifera from Upper Pleistocene-Holocene sediments cored in the continental slope of the western Ross Sea (2383 m water depth) revealed that the record of calcareous assemblages was restricted to a limited time interval (approximately 6 kyr) and characterized by a dominance of phytodetritus-exploiting taxa, such as Alabaminella weddellensis and Epistominella exigua. Rod-shaped calcified, fossil bacteria infest the partially dissolved calcareous foraminiferal surfaces, either as clusters or as isolated cells, suggesting that significant changes (from under-to oversaturated conditions with respect to calcium carbonate) in the chemistry of the seawater developed before the final burial of the foraminiferal tests. We postulate that bacterial activity on a microenvironmental scale (interface and pore water) in the sea floor could influence pore water conditions in such a way as to preserve carbonate in deep marine regions where environmental conditions usually prevent the establishment of carbonate secreting communities. (C) 1999 Elsevier Science B.V. All rights reserved.

Investigations on foraminifera from Upper Pleistocene-Holocene sediments cored in the continental slope of the western Ross Sea (2383 m water depth) revealed that the record of calcareous assemblages was restricted to a limited time interval (approximately 6 kyr) and characterized by a dominance of phytodetritus-exploiting taxa, such as Alabaminella weddellensis and Epistominella exigua. Rod-shaped calcified, fossil bacteria infest the partially dissolved calcareous foraminiferal surfaces, either as clusters or as isolated cells, suggesting that significant changes (from under-to oversaturated conditions with respect to calcium carbonate) in the chemistry of the seawater developed before the final burial of the foraminiferal tests. We postulate that bacterial activity on a microenvironmental scale (interface and pore water) in the sea floor could influence pore water conditions in such a way as to preserve carbonate in deep marine regions where environmental conditions usually prevent the establishment of carbonate secreting communities. (C) 1999 Elsevier Science B.V. All rights reserved.

Westall, F  (1999)

Fossil bacteria

Enigmatic Microorganisms and Life in Extreme Environments 74-88 - Editor(s) : Seckbach, J

Barbieri, R ; D’onofrio, S ; Westall, F ; Melis, R   (1999)

Calcified bacteria on benthic foraminfera from Antarctic sediments

Palaeoecology, Palaeogeography, Palaeoclimatology 149 45-61

Brack, A ; Clancy, P ; Fitton, B ; Hofmann, B ; Horneck, G ; Kurat, G ; Maxwell, J ; Ori, G ; Pillinger, C ; Raulin, F ; Thomas, N ; Westall, F  (1999)

An integrated exobiology package for the search for life on Mars

Life Sciences : Exobiology 23 (2) 301-308
A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes : * Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. * Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyze the mineralogy of subsurface aliquots, to analyze the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). * Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate. (C) 1999 COSPAR. Published by Elsevier Science Ltd.

A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes : * Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. * Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyze the mineralogy of subsurface aliquots, to analyze the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). * Macroscopic and microscopic inspection of subsurface aliquots to search for life’s indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate. (C) 1999 COSPAR. Published by Elsevier Science Ltd.


1998   Références trouvées : 3

Westall, F ; Gobbi, P ; Gerneke, D ; Mazzotti, G  (1998)

Ultrastructure in the carbonate globules of Martian meteorite ALH84001

Exobiology : Matter, Energy, and Information in The Origin and Evolution of Life in The Universe 245-250 - Editor(s) : Chela-Flores, J ; Raulin, F

Westall, F  (1998)

The oldest fossil mineral bacteria from the Early Archean of South Africa and Australia

Exobiology : Matter, Energy, and Information in The Origin and Evolution of Life in The Universe 181-186 - Editor(s) : Chela-Flores, J ; Raulin, F

Brack, A ; Clancy, P ; Fitton, B ; Hoffmann, B ; Horneck, G ; Kurat, G ; Maxwell, J ; Ori, G ; Pillinger, C ; Raulin, F ; Thomas, N ; Westall, F  (1998)

Search for life on Mars.

Biological Sciences in Space 12 (2) 119-23
A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes : -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.

A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes : -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life’s indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.


1997   Références trouvées : 2

Westall, F  (1997)

The influence of cell wall composition on the fossilisation of bacteria and the implications for the search for early life forms

Astronomical and Biochemical Origins and The Search For Life in The Universe 491-504 - Editor(s) : Cosmovici, CB ; Bowyer, S ; Werthimer, D

Guerzoni, ME ; Lanciotti, R ; Westall, F ; Pittia, P  (1997)

Interrelationship between chemico-physical variables, microstructure and growth of Listeria monocytogenes and Yarrowia lipolytica in food model systems

Sciences Des Aliments 17 (5) 507-522
The microstructural modifications induced by homogenization treatment at 250 bars in model systems simulating dairy products, in which lipid content, NaCl and pH values were modulated according to a Central Composite Design, were analysed in relation to the growth of Listeria monocytogenes and a spoilage yeast, Yarrowia lipolytica. Polynomial equations were obtained which describe the effects of such variables on the a(w), microstructural features, as well as of the two strains. The microstructural features were, in particular, the diameter of the water droplets and the total space availability. A comparison of such equations and of the relative response surfaces suggested that the three variables and their interactions, in addition to a direct effect on microbial growth, played an indirect role due to their influence on microstructural features, such as diameter of water droplets and total water phase availability. In particular, the pH value affected the a(w) and the total space available for microbial growth, while the NaCl content had a prevalently indirect effect on space availability and on the diameter of the water droplets. The results suggested that, while the growth extent of the yeast was limited by the dimensions of the larger water phase droplets, the growth of L. monocytogenes was affected more by the chemico-physical characteristics and was dependent on the total water phase space availability.

The microstructural modifications induced by homogenization treatment at 250 bars in model systems simulating dairy products, in which lipid content, NaCl and pH values were modulated according to a Central Composite Design, were analysed in relation to the growth of Listeria monocytogenes and a spoilage yeast, Yarrowia lipolytica. Polynomial equations were obtained which describe the effects of such variables on the a(w), microstructural features, as well as of the two strains. The microstructural features were, in particular, the diameter of the water droplets and the total space availability. A comparison of such equations and of the relative response surfaces suggested that the three variables and their interactions, in addition to a direct effect on microbial growth, played an indirect role due to their influence on microstructural features, such as diameter of water droplets and total water phase availability. In particular, the pH value affected the a(w) and the total space available for microbial growth, while the NaCl content had a prevalently indirect effect on space availability and on the diameter of the water droplets. The results suggested that, while the growth extent of the yeast was limited by the dimensions of the larger water phase droplets, the growth of L. monocytogenes was affected more by the chemico-physical characteristics and was dependent on the total water phase space availability.


1996   Références trouvées : 3

Suzzi, G ; Romano, P ; Westall, F ; Vannini, L  (1996)

The flocculation of wine yeasts : Biochemical and morphological characteristics in Kloeckera apiculata

Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 69 (3) 273-277
The floc-forming ability of flocculent strains of Kloeckera apiculata, isolated from musts, was tested for susceptibility to proteinase and sugar treatments. Three different flocculation phenotypes were discriminated by protease digestion, whereas the inhibition of flocculation by sugars distinguished two definite patterns : one mechanism of flocculation involved a galactose-specific protein and the other a broad-specificity lectin. SEM and TEM observation of the cell surface of two different Kloeckera strains revealed fine fibrils and a diffuse structure at the point of contact in one strain, and thick masses of mucus on the cell wall of the other strain.

The floc-forming ability of flocculent strains of Kloeckera apiculata, isolated from musts, was tested for susceptibility to proteinase and sugar treatments. Three different flocculation phenotypes were discriminated by protease digestion, whereas the inhibition of flocculation by sugars distinguished two definite patterns : one mechanism of flocculation involved a galactose-specific protein and the other a broad-specificity lectin. SEM and TEM observation of the cell surface of two different Kloeckera strains revealed fine fibrils and a diffuse structure at the point of contact in one strain, and thick masses of mucus on the cell wall of the other strain.

Liebig, K ; Westall, F ; Schmitz, M  (1996)

A study of fossil microstructures from the Eocene Messel Formation using transmission electron microscopy

Neues Jahrbuch Fur Geologie Und Palaontologie-Monatshefte 4 218-231

Bartolucci, L ; Pariani, A ; Guerzoni, ME ; Westall, F ; Gardini, F  (1996)

A proposed method for determining bacterial colonisation in drinking-water pipe networks

Journal of Water Supply 14 (3-4)


1995   Références trouvées : 1

Westall, F ; Boni, L ; Guerzoni, E  (1995)

The experimental silicification of microorganisms

Palaeontology 38 495-528 Part 3
A number of samples containing microorganisms was silicified at atmospheric and deep-sea pressures with the aim of studying the process of fossilization using SEM and TEM techniques. The samples included a bacteria-fungi-diatom culture, a bacteria-diatom culture, a microorganism-rich water sample from the interface of south-eastern Atlantic deep-sea sediments, and a microbial mat from the surface of other southeastern Atlantic deep-sea sediments. Silicification commenced with the impregnation of organic material (e.g. cell walls, cytoplasm) by subelectron-microscope-sized crystallites, and the nucleation of spheres of porous hydrated silica within the mucus (extracellular polymeric substances, EPS) of the groundmass.

A number of samples containing microorganisms was silicified at atmospheric and deep-sea pressures with the aim of studying the process of fossilization using SEM and TEM techniques. The samples included a bacteria-fungi-diatom culture, a bacteria-diatom culture, a microorganism-rich water sample from the interface of south-eastern Atlantic deep-sea sediments, and a microbial mat from the surface of other southeastern Atlantic deep-sea sediments. Silicification commenced with the impregnation of organic material (e.g. cell walls, cytoplasm) by subelectron-microscope-sized crystallites, and the nucleation of spheres of porous hydrated silica within the mucus (extracellular polymeric substances, EPS) of the groundmass.


1994   Références trouvées : 3

Westall, F ; Rince, Y  (1994)

The biofilm and microbe-particle interactions : examples from diatomaceous sediments

Sedimentology 41 147-162

Westall, F  (1994)

Silicified bacteria and associated biofilm from the deep-sea sedimentary environment

Kaupia- Darmstšdter Beitršge Zur Naturgeschichte 4 29-43

Westall, F ; Rince, Y  (1994)

Biofilms, microbial mats and microbe particle interactions - electron-microscope observations from diatomaceous sediments

Sedimentology 41 (1) 147-162
Sediments and diatoms from the mudflats of the Bay of Bourgneuf in western France were examined in an electron microscope study of biofilms and microbial mats. The sediments were kept in an aquarium for study and a diatom culture was made of the benthic diatoms. The sediment biofilm was composed of exopolymeric substances (EPS), incorporated clay particles and, rarely, bacteria. This film coated all particles at the sediment-water interface. Its surface morphology reflected its composition and internal structure. Thin films were smooth, whilst a lumpy structure or incorporated fibrils produced either a mammillated or ropy surface, and clays in the structure gave rise to a flaky morphology. At shallow depths in the sediment column (0.5 cm) the biofilm was already degraded. The biofilm coating degraded diatom frustules in the benthic diatom culture consisted of EPS and bacteria and presented a ragged appearance.

Sediments and diatoms from the mudflats of the Bay of Bourgneuf in western France were examined in an electron microscope study of biofilms and microbial mats. The sediments were kept in an aquarium for study and a diatom culture was made of the benthic diatoms. The sediment biofilm was composed of exopolymeric substances (EPS), incorporated clay particles and, rarely, bacteria. This film coated all particles at the sediment-water interface. Its surface morphology reflected its composition and internal structure. Thin films were smooth, whilst a lumpy structure or incorporated fibrils produced either a mammillated or ropy surface, and clays in the structure gave rise to a flaky morphology. At shallow depths in the sediment column (0.5 cm) the biofilm was already degraded. The biofilm coating degraded diatom frustules in the benthic diatom culture consisted of EPS and bacteria and presented a ragged appearance.


1993   Références trouvées : 1

Westall, F ; Rossi, S ; Mascle, J  (1993)

Current-controlled sedimentation in the equatorial atlantic - examples from the southern margin of the guinea plateau and the romanche fracture-zone

Sedimentary Geology 82 (1-4) 157-171
3.5 kHz and seismic reflection data were used in a study area of bottom-current control of sedimentation in two areas of the Equatorial Atlantic : a 100 km long segment of the Romanche Fracture Zone (RFZ) and a 30 km wide sector of the southern margin of the Guinea Plateau. The RFZ is the most important conduit for Antarctic Bottom Water (AABW) into the eastern Atlantic. At mid depths (ca. 1500-4500 m), North Atlantic Deep Water (NADW) spreads southwards and eastwards, whereas at the surface, directly overlying the RFZ, is the Equatorial Divergence, a zone of high biological production.

3.5 kHz and seismic reflection data were used in a study area of bottom-current control of sedimentation in two areas of the Equatorial Atlantic : a 100 km long segment of the Romanche Fracture Zone (RFZ) and a 30 km wide sector of the southern margin of the Guinea Plateau. The RFZ is the most important conduit for Antarctic Bottom Water (AABW) into the eastern Atlantic. At mid depths (ca. 1500-4500 m), North Atlantic Deep Water (NADW) spreads southwards and eastwards, whereas at the surface, directly overlying the RFZ, is the Equatorial Divergence, a zone of high biological production.


1992   Références trouvées : 2

Rossi, S ; Westall, F ; Mascle, J  (1992)

The geomorphology of the southwest guinea margin - tectonic, volcanic, mass movement and bottom current influences

Marine Geology 105 (1-4) 225-240
Slope morphology controls were examined in two topographically different areas on the southern transform margin of the Guinea Plateau (Sectors G1 and G2). Tectonic control is manifested by steep, faulted slopes in both study areas, and by basement warping in Sector G1 and magmatic emplacements in Sector G2. Sediment deposition and the formation of bedforms such as sediment waves on the margin are influenced by topographically intensified bottom currents within the intermediate-deep water mass, the North Atlantic Deep Water (NADW), as well as in the shallower Equatorial Surface Water (ESW)/Antarctic Intermediate Water (AAIW) at the uppermost slope/plateau-edge level. Thus, unconsolidated sediments are eroded from steep slopes (the upper and lower continental slopes, canyon walls and the slopes of the volcanic cones) and concentrated into slope-parallel depocentres in Sector G1, and ponded in moats between the volcanic cones in Sector G2. Surficial sediment waves, which are apparently oriented at an angle to the slope, range from 0.5 to 2 km in wavelength and up to 100 m in height. Mass movement of the sediment cover is significant on the lower slopes of both sectors and is the result of slope steepness and instability caused by the continuing tectonic activity.

Slope morphology controls were examined in two topographically different areas on the southern transform margin of the Guinea Plateau (Sectors G1 and G2). Tectonic control is manifested by steep, faulted slopes in both study areas, and by basement warping in Sector G1 and magmatic emplacements in Sector G2. Sediment deposition and the formation of bedforms such as sediment waves on the margin are influenced by topographically intensified bottom currents within the intermediate-deep water mass, the North Atlantic Deep Water (NADW), as well as in the shallower Equatorial Surface Water (ESW)/Antarctic Intermediate Water (AAIW) at the uppermost slope/plateau-edge level. Thus, unconsolidated sediments are eroded from steep slopes (the upper and lower continental slopes, canyon walls and the slopes of the volcanic cones) and concentrated into slope-parallel depocentres in Sector G1, and ponded in moats between the volcanic cones in Sector G2. Surficial sediment waves, which are apparently oriented at an angle to the slope, range from 0.5 to 2 km in wavelength and up to 100 m in height. Mass movement of the sediment cover is significant on the lower slopes of both sectors and is the result of slope steepness and instability caused by the continuing tectonic activity.

Mascle, J ; Basile, C ; Westall, F ; Rossi, S  (1992)

Morphostructure of the Guinea and Ivory Coast transform margins : combined effects of structural and bottom current controls

Geologic Evolution of Atlantic Continental Rises 282-292 - Editor(s) : Poag, CW ; de Gracianski, PD


1990   Références trouvées : 1

Westall, F ; Fenner, J   (1990)

Polarfront fluctuations and the Matuyama/Bruhnes palaeoceanographic record in the SE Atlantic

Geologic History of The Polar Oceans : Arctic Versus Antarctic 761-782 - Editor(s) : Bleil, U


1989   Références trouvées : 1

Rossi, S ; Mascle, J ; Westall, F  (1989)

Studio geomorphologico di due aree lungo il margine trasforme della Guinea (Africa Equatoriale)

Rend.Soc. Geol. Italy 12 33-36


1987   Références trouvées : 2

Westall, F  (1987)

The influence of terrigenous and continental shelf components on Quaternary continental margin sediments off the SE coast of South Africa

African Geology Reviews 568-578 - Editor(s) : Bowden, P ; Kinnaird, JA

Westall, F  (1987)

Quaternary continental-margin sedimentation off the southeast coast of south-africa

Geological Journal 22 563-578


1981   Références trouvées : 1

Camden-Smith, F ; Perrins, LA ; Dingle, RV ; Brundrit, GB  (1981)

A preliminary report on long-term bottom current measurements and sediment transport/erosion in the Agulhas Passage, southwest Indian Ocean

Marine Geology 39 M81-M88


1979   Références trouvées : 1

Dingle, RV ; Camden-Smith, F  (1979)

Acoustic stratigraphy and current-generated bedforms in deep ocean basins off Southeastern Africa

Marine Geology 33 2 -


Mots-clés

Responsable d’équipe , Directeur de recherche , Responsable de groupe thématique , Exobiologie