Partenaires

CNRS


Rechercher


Accueil > Annuaire

Eliseeva Svetlana


email

tél : 02.38.25.56.52 - fax : 02.38.25.55.83

CV

Publications

Publications

2016   Références trouvées : 6

Martinić I., Eliseeva S. V. and Petoud S.   (2016)

Near-infrared emitting probes for biological imaging : Organic fluorophores, quantum dots, fluorescent proteins, lanthanide(III) complexes and nanomaterials

J. Lumin. (2016) - doi:http://dx.doi.org/10.1016/j.jlumin.2016.09.058
Fluorescence optical imaging is a highly sensitive and powerful tool with diverse in vitro and in vivo applications for preclinical and clinical studies. This review is focused on the optical imaging in the near-infrared (NIR) region since improved signal-to-noise ratio and deeper penetration of light through tissues could be achieved due to the minimal autofluorescence and reduced light scattering at these wavelengths. In particular, imaging agents absorbing and emitting in the biological diagnostic window (650–1450 nm) are discussed. The photophysical properties and particularities of chemical structures or compositions of four different families of probes : (i) organic fluorophores, (ii) fluorescent proteins (FPs), (iii) semi-conductor nanocrystals (quantum dots) and (iv) lanthanide(III)-based complexes and nanomaterials are presented. Advantages and drawbacks, commercial availability and toxicity as well as selected applications of these probes are discussed. A specific attention is given to lanthanide(III)-based compounds due to their unique optical properties, e.g. sharp emission bands with minimal sensitivity to the microenvironment, large differences between excitation and emission wavelengths and strong resistance toward photobleaching. The use of such probes brings additional perspectives and facilitates developments of novel strategies in optical imaging including real-time experiments and new approaches for diagnostic.

Fluorescence optical imaging is a highly sensitive and powerful tool with diverse in vitro and in vivo applications for preclinical and clinical studies. This review is focused on the optical imaging in the near-infrared (NIR) region since improved signal-to-noise ratio and deeper penetration of light through tissues could be achieved due to the minimal autofluorescence and reduced light scattering at these wavelengths. In particular, imaging agents absorbing and emitting in the biological diagnostic window (650–1450 nm) are discussed. The photophysical properties and particularities of chemical structures or compositions of four different families of probes : (i) organic fluorophores, (ii) fluorescent proteins (FPs), (iii) semi-conductor nanocrystals (quantum dots) and (iv) lanthanide(III)-based complexes and nanomaterials are presented. Advantages and drawbacks, commercial availability and toxicity as well as selected applications of these probes are discussed. A specific attention is given to lanthanide(III)-based compounds due to their unique optical properties, e.g. sharp emission bands with minimal sensitivity to the microenvironment, large differences between excitation and emission wavelengths and strong resistance toward photobleaching. The use of such probes brings additional perspectives and facilitates developments of novel strategies in optical imaging including real-time experiments and new approaches for diagnostic.

Suffren Y., Golesorkhi B., Zare D., Guenee L., Nozary H., Eliseeva S. V., Petoud S., Hauser A. and Piguet C.  (2016)

Taming Lanthanide-Centered Upconversion at the Molecular Level

Inorganic chemistry (2016) 117 (51) 26957-26963 - doi : 10.1021/acs.inorgchem.6b00700
Considered at the beginning of the 21th century as being incompatible with the presence of closely bound high-energy oscillators, lanthanide-centered superexcitation, which is the raising of an already excited electron to an even higher level by excited-state energy absorption, is therefore a very active topic strictly limited to the statistical doping of low-phonon bulk solids and nanoparticles. We show here that molecular lanthanide-containing coordination complexes may be judiciously tuned to overcome these limitations and to induce near-infrared (NIR)-to-visible (VIS)-light upconversion via the successive absorption of two low-energy photons using linear-optical responses. Whereas single-ion-centered excited-state absorption mechanisms remain difficult to implement in lanthanide complexes, the skillful design of intramolecular intermetallic energy-transfer processes operating in multimetallic architectures is at the origin of the recent programming of erbium-centered molecular upconversion.

Considered at the beginning of the 21th century as being incompatible with the presence of closely bound high-energy oscillators, lanthanide-centered superexcitation, which is the raising of an already excited electron to an even higher level by excited-state energy absorption, is therefore a very active topic strictly limited to the statistical doping of low-phonon bulk solids and nanoparticles. We show here that molecular lanthanide-containing coordination complexes may be judiciously tuned to overcome these limitations and to induce near-infrared (NIR)-to-visible (VIS)-light upconversion via the successive absorption of two low-energy photons using linear-optical responses. Whereas single-ion-centered excited-state absorption mechanisms remain difficult to implement in lanthanide complexes, the skillful design of intramolecular intermetallic energy-transfer processes operating in multimetallic architectures is at the origin of the recent programming of erbium-centered molecular upconversion.

Chow C. Y., Eliseeva S. V., Trivedi E. R., Nguyen T. N., Kampf J. W., Petoud S. and Pecoraro V. L.  (2016)

Ga3+/Ln3+ Metallacrowns : A Promising Family of Highly Luminescent Lanthanide Complexes That Covers Visible and Near-Infrared Domains

Journal of the American Chemical Society (2016) 138 (15) 5100-5109 - doi : 10.1021/jacs.6b00984
Luminescent lanthanide(III)-based molecular scaffolds hold great promises for materials science and for biological applications. Their fascinating photophysical properties enable spectral discrimination of emission bands that range from the visible to the near-infrared (NIR) regions. In addition, their strong resistance to photobleaching makes them suitable for long duration or repeated biological experiments using a broad range of sources of excitation including intense and focalized systems such as lasers (e.g., confocal microscopy). A main challenge in the creation of luminescent lanthanide(III) complexes lies in the design of a ligand framework that combines two main features : (i) it must include a chromophoric moiety that possesses a large molar absorptivity and is able to sensitize several different lanthanide(III) ions emitting in the visible and/or in the near-infrared, and (ii) it must protect the Ln3+ cation by minimizing nonradiative deactivation pathways due to the presence of −OH, −NH and −CH vibrations. Herein, a new family of luminescent Ga3+/Ln3+ metallacrown (MC) complexes is reported. The MCs with the general composition [LnGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] (Ln-1, Ln = Sm3+–Yb3+) were synthesized in a one pot reaction using salicylhydroxamic acid (H3shi) with Ga3+ and Ln3+ nitrates as reagents. The molecular structure of [DyGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] was obtained by X-ray analysis of single crystals and shows that the complex is formed as a [12-MCGa(III)shi-4] core with four benzoate molecules bridging the central Dy3+ ion to the Ga3+ ring metals. The powder X-ray diffraction analysis demonstrates that all other isolated complexes are isostructural. The extended analysis of the luminescence properties of these complexes, excited by the electronic states of the chromophoric ligands, showed the presence of characteristic, sharp f–f transitions that can be generated not only in the NIR (Sm, Dy, Ho, Er, Yb) but also in the visible (Sm, Eu, Tb, Dy, Tm). All Ln-1 complexes possess very high quantum yield values with respect to other literature compounds, indicating a good sensitization efficiency of the [12-MCGa(III)shi-4] scaffold. Especially, as of today, the Yb-1 complex exhibits the highest NIR quantum yield reported for a lanthanide(III) complex containing C–H bonds with a value of 5.88(2)% in the solid state. This work is a significant step forward toward versatile, easily prepared luminescent lanthanide(III) complexes suitable for a variety of applications including highly in demand biological imaging, especially in the NIR domain.

Luminescent lanthanide(III)-based molecular scaffolds hold great promises for materials science and for biological applications. Their fascinating photophysical properties enable spectral discrimination of emission bands that range from the visible to the near-infrared (NIR) regions. In addition, their strong resistance to photobleaching makes them suitable for long duration or repeated biological experiments using a broad range of sources of excitation including intense and focalized systems such as lasers (e.g., confocal microscopy). A main challenge in the creation of luminescent lanthanide(III) complexes lies in the design of a ligand framework that combines two main features : (i) it must include a chromophoric moiety that possesses a large molar absorptivity and is able to sensitize several different lanthanide(III) ions emitting in the visible and/or in the near-infrared, and (ii) it must protect the Ln3+ cation by minimizing nonradiative deactivation pathways due to the presence of −OH, −NH and −CH vibrations. Herein, a new family of luminescent Ga3+/Ln3+ metallacrown (MC) complexes is reported. The MCs with the general composition [LnGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] (Ln-1, Ln = Sm3+–Yb3+) were synthesized in a one pot reaction using salicylhydroxamic acid (H3shi) with Ga3+ and Ln3+ nitrates as reagents. The molecular structure of [DyGa4(shi)4(C6H5CO2)4(C5H5N) (CH3OH)] was obtained by X-ray analysis of single crystals and shows that the complex is formed as a [12-MCGa(III)shi-4] core with four benzoate molecules bridging the central Dy3+ ion to the Ga3+ ring metals. The powder X-ray diffraction analysis demonstrates that all other isolated complexes are isostructural. The extended analysis of the luminescence properties of these complexes, excited by the electronic states of the chromophoric ligands, showed the presence of characteristic, sharp f–f transitions that can be generated not only in the NIR (Sm, Dy, Ho, Er, Yb) but also in the visible (Sm, Eu, Tb, Dy, Tm). All Ln-1 complexes possess very high quantum yield values with respect to other literature compounds, indicating a good sensitization efficiency of the [12-MCGa(III)shi-4] scaffold. Especially, as of today, the Yb-1 complex exhibits the highest NIR quantum yield reported for a lanthanide(III) complex containing C–H bonds with a value of 5.88(2)% in the solid state. This work is a significant step forward toward versatile, easily prepared luminescent lanthanide(III) complexes suitable for a variety of applications including highly in demand biological imaging, especially in the NIR domain.

Boyer M., Carrion A. J. F., Ory S., Becerro A. I., Villette S., Eliseeva S. V., Petoud S., Aballea P., Matzen G. and Allix M.  (2016)

Transparent polycrystalline SrREGa3O7 melilite ceramics : potential phosphors for tuneable solid state lighting

Journal of Materials Chemistry (2016) 4 (15) 3238-3247 - doi : 10.1039/C6TC00633G
Full and congruent crystallization from glass is applied to the SrREGa3O7 melilite family (RE = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y). This innovative process enables the synthesis of polycrystalline ceramics exhibiting high transparency both in the visible and near infrared regions, despite tetragonal crystal structures and micrometer scale grain sizes. Moreover, glass crystallization provides an original route to synthesize new crystalline phases which are not accessible via a classic solid state reaction, as demonstrated for SrYbGa3O7 and SrTmGa3O7. To illustrate the potential optical applications of such materials, SrGdGa3O7 transparent polycrystalline ceramics are doped with Dy3+ or Tb3+/Eu3+ in order to generate white light emission under UV excitation. It is foreseen that such transparent melilite ceramic phosphors, prepared via a cost-effective process, can be successfully used in solid state lighting devices of considerable technological interest.

Full and congruent crystallization from glass is applied to the SrREGa3O7 melilite family (RE = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y). This innovative process enables the synthesis of polycrystalline ceramics exhibiting high transparency both in the visible and near infrared regions, despite tetragonal crystal structures and micrometer scale grain sizes. Moreover, glass crystallization provides an original route to synthesize new crystalline phases which are not accessible via a classic solid state reaction, as demonstrated for SrYbGa3O7 and SrTmGa3O7. To illustrate the potential optical applications of such materials, SrGdGa3O7 transparent polycrystalline ceramics are doped with Dy3+ or Tb3+/Eu3+ in order to generate white light emission under UV excitation. It is foreseen that such transparent melilite ceramic phosphors, prepared via a cost-effective process, can be successfully used in solid state lighting devices of considerable technological interest.

He, J. Bonnet, C. S. Eliseeva, S. V. Lacerda, S. Chauvin, T. Retailleau, P. Szeremeta, F. Badet, B. Petoud, S. Tóth, E. and Durand, P.  (2016)

Prototypes of Lanthanide(III) Agents Responsive to Enzymatic Activities in Three Complementary Imaging Modalities : Visible/Near-Infrared Luminescence, PARACEST-, and T-MRI

Journal of the American Chemical Society (2016) 138 (9) 2913-2916 - doi : 10.1021/jacs.5b12084
We report first prototypes of responsive lanthanide(III) complexes that can be monitored independently in three complementary imaging modalities. Through the appropriate choice of lanthanide(III) cations, the same reactive ligand can be used to form complexes providing detection by (i) visible (Tb3+) and near-infrared (Yb3+) luminescence, (ii) PARACEST- (Tb3+, Yb3+), or (iii) T1-weighted (Gd3+) MRI. The use of lanthanide(III) ions of different natures for these imaging modalities induces only a minor change in the structure of complexes that are therefore expected to have a single biodistribution and cytotoxicity.

We report first prototypes of responsive lanthanide(III) complexes that can be monitored independently in three complementary imaging modalities. Through the appropriate choice of lanthanide(III) cations, the same reactive ligand can be used to form complexes providing detection by (i) visible (Tb3+) and near-infrared (Yb3+) luminescence, (ii) PARACEST- (Tb3+, Yb3+), or (iii) T1-weighted (Gd3+) MRI. The use of lanthanide(III) ions of different natures for these imaging modalities induces only a minor change in the structure of complexes that are therefore expected to have a single biodistribution and cytotoxicity.

Eliseeva S. V., Golovach I. P., Liasotskyi V. S., Antonovich V. P., Petoud S. and Meshkova S. B.  (2016)

A role of copper(II) ions in the enhancement of visible and near-infrared lanthanide(III) luminescence

Journal of Luminescence (2016) 171, 191-197 - doi : 10.1016/j.jlumin.2015.10.055
Most of the existing optical methods for CuII detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a "turn-on" lanthanide(III)-based molecular probe for the specific detection of CuII ions based on both visible (TbIII, EuIII) and near-infrared (NdIII, YbIII) emission. Quantum yields of the characteristic LnIII emission signals increases by at least two-orders of magnitude upon addition of CuII into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of CuII ions does not significantly affect the energy positions of the singlet (32,260 cm−1) and triplet (25,640–25,970 cm−1) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce CuII to CuI has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards CuII over other transition metal ions : the addition of divalent ZnII, CdII, PdII, NiII, CoII or trivalent FeIII, GaIII, InIII ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of CuII results in a 20- to 30-times lanthanide luminescence enhancement. This new strategy results in a versatile and selective optical platform for the design of efficient “turn-on” sensors for CuII ions based on visible and near-infrared LnIII luminescence.

Most of the existing optical methods for CuII detection rely on a “turn-off” approach using visible lanthanide(III) luminescence. In this work we present an innovative molecular systems where the podands bis(2-hydrazinocarbonylphenyl) ethers of ethylene glycol (L1) and diethylene glycol (L2) have been designed, synthesised and tested with an ultimate goal to create a "turn-on" lanthanide(III)-based molecular probe for the specific detection of CuII ions based on both visible (TbIII, EuIII) and near-infrared (NdIII, YbIII) emission. Quantum yields of the characteristic LnIII emission signals increases by at least two-orders of magnitude upon addition of CuII into water/acetonitrile (9/1) solutions of LnL (L=L1, L2) complexes. A detailed investigation of ligand-centred photophysical properties of water/acetonitrile (9/1) solutions of CuL, GdL and GdCuL complexes revealed that the presence of CuII ions does not significantly affect the energy positions of the singlet (32,260 cm−1) and triplet (25,640–25,970 cm−1) states, but partially or fully eliminates the singlet state quenching through an electron transfer mechanism. This effect increases the probability of intersystem crossing leading to enhanced triplet-to-singlet emission ratio and to longer triplet state lifetimes. The redox activity of hydrazine moieties and their ability to reduce CuII to CuI has been indicated by a qualitative assay with neocuproine. Finally, the probe demonstrates a good selectivity towards CuII over other transition metal ions : the addition of divalent ZnII, CdII, PdII, NiII, CoII or trivalent FeIII, GaIII, InIII ion salts into solutions of TbL either does not affect emission intensity or increases it to a maximum of 2–3 times, while, under similar experimental conditions, the presence of CuII results in a 20- to 30-times lanthanide luminescence enhancement. This new strategy results in a versatile and selective optical platform for the design of efficient “turn-on” sensors for CuII ions based on visible and near-infrared LnIII luminescence.


2015   Références trouvées : 4

Shavaleev N. M., Eliseeva S. V., Scopelliti R. and Bunzli J. C.  (2015)

Influence of symmetry on the luminescence and radiative lifetime of nine-coordinate europium complexes

Inorganic Chemistry (2015) 54 (18) 9166-9173 - doi : 10.1021/acs.inorgchem.5b01580
Homoleptic mononuclear nine-coordinate lanthanum(III) and europium(III) tris-complexes [Ln(N(wedge)N(wedge)O)3].nH2O with two tridentate N-benzylbenzimidazole pyridine-2-carboxylates exhibit a rare C3-symmetry of the lanthanide coordination polyhedron in the solid state, as confirmed by luminescence spectroscopy and by X-ray crystallography (the three N(wedge)N(wedge)O ligands are arranged "up-up-up" around the lanthanide ion). The symmetry, however, is changed to the more common C1 upon dissolution of the complexes in dichloromethane, as revealed by luminescence spectroscopy (the three ligands are likely to be arranged "up-up-down"). The new europium complexes emit efficient ligand-sensitized metal-centered luminescence with excited-state lifetimes of 1.56-2.18 ms and quantum yields of 25-41% in the solid and in solution. The change of the symmetry from (a higher) C3 to (a lower) C1 alters the luminescence spectrum, shortens the radiative lifetime, and increases the luminescence efficiency of the europium complexes.

Homoleptic mononuclear nine-coordinate lanthanum(III) and europium(III) tris-complexes [Ln(N(wedge)N(wedge)O)3].nH2O with two tridentate N-benzylbenzimidazole pyridine-2-carboxylates exhibit a rare C3-symmetry of the lanthanide coordination polyhedron in the solid state, as confirmed by luminescence spectroscopy and by X-ray crystallography (the three N(wedge)N(wedge)O ligands are arranged "up-up-up" around the lanthanide ion). The symmetry, however, is changed to the more common C1 upon dissolution of the complexes in dichloromethane, as revealed by luminescence spectroscopy (the three ligands are likely to be arranged "up-up-down"). The new europium complexes emit efficient ligand-sensitized metal-centered luminescence with excited-state lifetimes of 1.56-2.18 ms and quantum yields of 25-41% in the solid and in solution. The change of the symmetry from (a higher) C3 to (a lower) C1 alters the luminescence spectrum, shortens the radiative lifetime, and increases the luminescence efficiency of the europium complexes.

Shavaleev N. M., Eliseeva S. V.  (2015)

Synthesis and spectroscopy of anionic tridentate benzimidazole-pyridine carboxylate and tetrazolate chromophore ligands

Inorganica Chimica Acta (2015) 427 81-86 - doi : 10.1016/j.ica.2014.11.037
We report on seven new anionic benzimidazole-pyridine carboxylate and tetrazolate tridentate N^N^O and N^N^N ligands that are modified with chromophore (phenyl, biphenyl, naphthyl) and solubilizing groups. The ligands are UV chromophores with the lowest-energy absorption maxima at 312–335nm and with the molar absorption coefficients of (20–25)×10 3 M −1 cm −1 in DMSO solution. The ligands form neutral complexes with trivalent lanthanides and sensitize the red luminescence of europium. The triplet state energies of the deprotonated ligands, which were measured from the phosphorescence spectra of their lanthanum complexes at 77K, are in the range of (18.8–21.1)×10 3 cm −1 . We also describe synthesis of non-symmetric pyridines that are 2,6- and 2,4,6-substituted with hydroxymethyl, carboxaldehyde, and carbonitrile groups.

We report on seven new anionic benzimidazole-pyridine carboxylate and tetrazolate tridentate N^N^O and N^N^N ligands that are modified with chromophore (phenyl, biphenyl, naphthyl) and solubilizing groups. The ligands are UV chromophores with the lowest-energy absorption maxima at 312–335nm and with the molar absorption coefficients of (20–25)×10 3 M −1 cm −1 in DMSO solution. The ligands form neutral complexes with trivalent lanthanides and sensitize the red luminescence of europium. The triplet state energies of the deprotonated ligands, which were measured from the phosphorescence spectra of their lanthanum complexes at 77K, are in the range of (18.8–21.1)×10 3 cm −1 . We also describe synthesis of non-symmetric pyridines that are 2,6- and 2,4,6-substituted with hydroxymethyl, carboxaldehyde, and carbonitrile groups.

Douvali A., Tsipis A. C., Eliseeva S. V., Petoud S., Papaefstathiou G. S., Malliakas C. D., Papadas I., Armatas G. S., Margiolaki I., Kanatzidis M. G., Lazarides T., Manos M. J.  (2015)

Turn-On Luminescence Sensing and Real-Time Detection of Traces of Water in Organic Solvents by a Flexible Metal-Organic Framework

Angewandte Chemie International Edition (2015) 54 (5) 1651-1656 - doi : 10.1002/anie.201410612
The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg2+ metal-organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05-5 % v/v) in various organic solvents through an unusual turn-on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.

The development of efficient sensors for the determination of the water content in organic solvents is highly desirable for a number of chemical industries. Presented herein is a Mg2+ metal-organic framework (MOF), which exhibits the remarkable capability to rapidly detect traces of water (0.05-5 % v/v) in various organic solvents through an unusual turn-on luminescence sensing mechanism. The extraordinary sensitivity and fast response of this MOF for water, and its reusability make it one of the most powerful water sensors known.

Zare, D. ; Suffren, Y. ; Guenee, L. ; Eliseeva, S. V. ; Nozary, H. ; Aboshyan-Sorgho, L. ; Petoud, S. ; Hauser, A. and Piguet, C.  (2015)

Smaller than a nanoparticle with the design of discrete polynuclear molecular complexes displaying near-infrared to visible upconversion

Dalton transactions (2015) 44 (6) 2529-2540 - doi : 10.1039/c4dt02336f
This work shows that the operation of near-infrared to visible light-upconversion in a discrete molecule is not limited to non-linear optical processes, but may result from superexcitation processes using linear optics. The design of nine-coordinate metallic sites made up of neutral N-heterocyclic donor atoms in kinetically inert dinuclear [GaEr(L1)3]6+ and trinuclear [GaErGa(L2)3]9+ helicates leads to [ErN9] chromophores displaying unprecedented dual visible nanosecond Er(4S3/2—>4I15/2) and near-infrared microsecond Er(4I13/2—>4I15/2) emissive components. Attempts to induce one ion excited-state absorption (ESA) upconversion upon near-infrared excitation of these complexes failed because of the too-faint Er-centred absorption cross sections. The replacement of the trivalent gallium cation with a photophysically-tailored pseudo-octahedral [CrN6] chromophore working as a sensitizer for trivalent erbium in [CrEr(L1)3]6+ improves the near-infrared excitation efficiency, leading to the observation of a weak energy transfer upconversion (ETU). The connection of a second sensitizer in [CrErCr(L2)3]9+ generates a novel mechanism for upconversion, in which the superexcitation process is based on the CrIII-sensitizers. Two successive Cr—>Er energy transfer processes (concerted-ETU) compete with a standard Er-centred ETU, and a gain in upconverted luminescence by a factor larger than statistical values is predicted and observed.

This work shows that the operation of near-infrared to visible light-upconversion in a discrete molecule is not limited to non-linear optical processes, but may result from superexcitation processes using linear optics. The design of nine-coordinate metallic sites made up of neutral N-heterocyclic donor atoms in kinetically inert dinuclear [GaEr(L1)3]6+ and trinuclear [GaErGa(L2)3]9+ helicates leads to [ErN9] chromophores displaying unprecedented dual visible nanosecond Er(4S3/2—>4I15/2) and near-infrared microsecond Er(4I13/2—>4I15/2) emissive components. Attempts to induce one ion excited-state absorption (ESA) upconversion upon near-infrared excitation of these complexes failed because of the too-faint Er-centred absorption cross sections. The replacement of the trivalent gallium cation with a photophysically-tailored pseudo-octahedral [CrN6] chromophore working as a sensitizer for trivalent erbium in [CrEr(L1)3]6+ improves the near-infrared excitation efficiency, leading to the observation of a weak energy transfer upconversion (ETU). The connection of a second sensitizer in [CrErCr(L2)3]9+ generates a novel mechanism for upconversion, in which the superexcitation process is based on the CrIII-sensitizers. Two successive Cr—>Er energy transfer processes (concerted-ETU) compete with a standard Er-centred ETU, and a gain in upconverted luminescence by a factor larger than statistical values is predicted and observed.


2014   Références trouvées : 4

Martins, A. F. Eliseeva, S. V. Carvalho, H. F. Teixeira, J. M. C. Paula, C. T. B. Hermann, P. Platas-Iglesias, C. Petoud, S. Toth, E. Geraldes, Cfgc  (2014)

A Bis(pyridine N-oxide) Analogue of DOTA : Relaxometric Properties of the Gd-III Complex and Efficient Sensitization of Visible and NIR-Emitting Lanthanide(III) Cations Including Pr-III and Ho-III

Chemistry-a European Journal (2015) 20 (45) 14834-14845 - doi : 10.1002/chem.201403856
We report the synthesis of a cyclen-based ligand (4,10-bis[(1-oxidopyridin-2-yl)methyl]-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid = L1) containing two acetate and two 2-methylpyridine N-oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the Gd-III complex may be sufficient for biological applications. A detailed structural study of the complexes by H-1 NMR spectroscopy and DFT calculations indicates that they adopt an anti-Delta(lambda lambda lambda lambda) conformation in aqueous solution, that is, an anti-square antiprismatic (anti-SAP) isomeric form, as demonstrated by analysis of the H-1 NMR paramagnetic shifts induced by Yb-III. The water-exchange rate of the Gd-III complex is k(ex)(298) = 6.7 x 10(6) s(-1), about a quarter of that for the mono-oxidopyridine analogue, but still about 50% higher than the k(ex)(298) of GdDOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). The 2-methylpyridine N-oxide chromophores can be used to sensitize a wide range of Ln(III) ions emitting in both the visible (Eu-III and Tb-III) and NIR (Pr-III, Nd-III, Ho-III, Yb-III) spectral regions. The emission quantum yield determined for the Yb-III complex (Q(Yb)(L) = 7.3(1) x 10(-3)) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.

We report the synthesis of a cyclen-based ligand (4,10-bis[(1-oxidopyridin-2-yl)methyl]-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid = L1) containing two acetate and two 2-methylpyridine N-oxide arms anchored on the nitrogen atoms of the cyclen platform, which has been designed for stable complexation of lanthanide(III) ions in aqueous solution. Relaxometric studies suggest that the thermodynamic stability and kinetic inertness of the Gd-III complex may be sufficient for biological applications. A detailed structural study of the complexes by H-1 NMR spectroscopy and DFT calculations indicates that they adopt an anti-Delta(lambda lambda lambda lambda) conformation in aqueous solution, that is, an anti-square antiprismatic (anti-SAP) isomeric form, as demonstrated by analysis of the H-1 NMR paramagnetic shifts induced by Yb-III. The water-exchange rate of the Gd-III complex is k(ex)(298) = 6.7 x 10(6) s(-1), about a quarter of that for the mono-oxidopyridine analogue, but still about 50% higher than the k(ex)(298) of GdDOTA (DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). The 2-methylpyridine N-oxide chromophores can be used to sensitize a wide range of Ln(III) ions emitting in both the visible (Eu-III and Tb-III) and NIR (Pr-III, Nd-III, Ho-III, Yb-III) spectral regions. The emission quantum yield determined for the Yb-III complex (Q(Yb)(L) = 7.3(1) x 10(-3)) is among the highest ever reported for complexes of this metal ion in aqueous solution. The sensitization ability of the ligand, together with the spectroscopic and relaxometric properties of its complexes, constitute a useful step forward on the way to efficient dual probes for optical imaging (OI) and MRI.

Zaim, A. Eliseeva, S. V. Guenee, L. Nozary, H. Petoud, S. Piguet, C.  (2014)

Lanthanide-to-lanthanide energy-transfer processes operating in discrete polynuclear complexes : can trivalent europium be used as a local structural probe ?

Chemistry (2014) 20 (38) 12172-12182 - doi : 10.1002/chem.201403206
This work, based on the synthesis and analysis of chemical compounds, describes a kinetic approach for identifying intramolecular intermetallic energy-transfer processes operating in discrete polynuclear lanthanide complexes, with a special emphasis on europium-containing entities. When all coordination sites are identical in a (supra)molecular complex, only heterometallic communications are experimentally accessible and a Tb —> Eu energy transfer could be evidenced in [TbEu(L5)(hfac)6] (hfac = hexafluoroacetylacetonate), in which the intermetallic separation amounts to 12.6 A. In the presence of different coordination sites, as found in the trinuclear complex [Eu3(L2)(hfac)9], homometallic communication can be induced by selective laser excitation and monitored with the help of high-resolution emission spectroscopy. The narrow and non-degenerated character of the Eu((5)D0 <—> (7)F0) transition excludes significant spectral overlap between donor and acceptor europium cations. Intramolecular energy-transfer processes in discrete polynuclear europium complexes are therefore limited to short distances, in agreement with the Fermi golden rule and with the kinetic data collected for [Eu3(L2)(hfac)9] in the solid state and in solution. Consequently, trivalent europium can be considered as a valuable local structural probe in discrete polynuclear complexes displaying intermetallic separation in the sub-nanometric domain, a useful property for probing lanthanido-polymers.

This work, based on the synthesis and analysis of chemical compounds, describes a kinetic approach for identifying intramolecular intermetallic energy-transfer processes operating in discrete polynuclear lanthanide complexes, with a special emphasis on europium-containing entities. When all coordination sites are identical in a (supra)molecular complex, only heterometallic communications are experimentally accessible and a Tb —> Eu energy transfer could be evidenced in [TbEu(L5)(hfac)6] (hfac = hexafluoroacetylacetonate), in which the intermetallic separation amounts to 12.6 A. In the presence of different coordination sites, as found in the trinuclear complex [Eu3(L2)(hfac)9], homometallic communication can be induced by selective laser excitation and monitored with the help of high-resolution emission spectroscopy. The narrow and non-degenerated character of the Eu((5)D0 <—> (7)F0) transition excludes significant spectral overlap between donor and acceptor europium cations. Intramolecular energy-transfer processes in discrete polynuclear europium complexes are therefore limited to short distances, in agreement with the Fermi golden rule and with the kinetic data collected for [Eu3(L2)(hfac)9] in the solid state and in solution. Consequently, trivalent europium can be considered as a valuable local structural probe in discrete polynuclear complexes displaying intermetallic separation in the sub-nanometric domain, a useful property for probing lanthanido-polymers.

Debroye, E. Eliseeva, S. V. Laurent, S. Elst, L. V. Muller, R. N. Parac-Vogt, T. N.  (2014)

Micellar self-assemblies of gadolinium(III)/europium(III) amphiphilic complexes as model contrast agents for bimodal imaging

Dalton Transactions. 43 (9) 3589-3600 - doi : 10.1039/c3dt52842a
The synthesis and characterization of two novel DTPA bisamide derivatives DTPA-BC(12)PheA and DTPA-BC(14)PheA functionalized with p-dodecylaniline and p-tetradecylaniline are described. The ligands were coordinated to Gd(III) and Eu(III), resulting in highly paramagnetic and luminescent complexes, respectively. Mixed micelles consisting of Gd/Eu-DTPA-BC(12)PheA and DTPA-BC(14)PheA with a homogeneous size distribution (33-40 nm) were prepared by the assembly of the amphiphilic complexes with phospholipid DPPC and a surfactant Tween 80 (R). Taking into account the sensitivity difference between magnetic resonance and optical imaging techniques, the ratios of Gd and Eu complexes (Gd/Eu) 1 : 1, 2 : 1, 3 : 1, 20 : 1 and 50 : 1 were combined in one single micelle and their optical and relaxometric properties were characterized in detail. Upon excitation at 290 nm, the micelles display characteristic red emission bands due to the D-5(0)-> F-7(J) (J = 0-4) transitions of Eu(III). The number of water molecules in the first coordination sphere of Eu(III) (q(Eu) = 0.1-0.2) was calculated from the lifetime measurements performed in H2O and D2O solutions. Micelles composed of exclusively europium complexes display quantum yields in the range of 1.0%, decreasing with the europium concentration when going from 1 : 1 to 50 : 1 Gd/Eu contents. The ligand-to-lanthanide sensitization efficiency for micelles consisting of Eu-DTPA-BC(12)PheA and Eu-DTPA-BC(14)PheA equals 3.8% and 4.1%, respectively. The relaxivity r(1) per Gd(III) ion at 40 MHz and 310 K reaches a maximum value of 14.2 s(-1) mM(-1) for the Gd-DTPA-BC(12)PheA assemblies and 16.0 s(-1) mM(-1) for the micellar Gd-DTPA-BC(14)PheA assemblies compared to a value of 3.5 s(-1) mM(-1) for Gd-DTPA (Magnevist r). Theoretical fitting of the H-1 NMRD profiles results in tR values of 4.2 to 6.6 ns. The optimal concentration ratio of Gd/Eu compounds in the micelles in order to provide the required bimodal performance has been determined to be 20 : 1. In the search for other bimodal systems, this discovery can be used as a guideline concerning the load of paramagnetic agents with respect to luminescent probes.

The synthesis and characterization of two novel DTPA bisamide derivatives DTPA-BC(12)PheA and DTPA-BC(14)PheA functionalized with p-dodecylaniline and p-tetradecylaniline are described. The ligands were coordinated to Gd(III) and Eu(III), resulting in highly paramagnetic and luminescent complexes, respectively. Mixed micelles consisting of Gd/Eu-DTPA-BC(12)PheA and DTPA-BC(14)PheA with a homogeneous size distribution (33-40 nm) were prepared by the assembly of the amphiphilic complexes with phospholipid DPPC and a surfactant Tween 80 (R). Taking into account the sensitivity difference between magnetic resonance and optical imaging techniques, the ratios of Gd and Eu complexes (Gd/Eu) 1 : 1, 2 : 1, 3 : 1, 20 : 1 and 50 : 1 were combined in one single micelle and their optical and relaxometric properties were characterized in detail. Upon excitation at 290 nm, the micelles display characteristic red emission bands due to the D-5(0)-> F-7(J) (J = 0-4) transitions of Eu(III). The number of water molecules in the first coordination sphere of Eu(III) (q(Eu) = 0.1-0.2) was calculated from the lifetime measurements performed in H2O and D2O solutions. Micelles composed of exclusively europium complexes display quantum yields in the range of 1.0%, decreasing with the europium concentration when going from 1 : 1 to 50 : 1 Gd/Eu contents. The ligand-to-lanthanide sensitization efficiency for micelles consisting of Eu-DTPA-BC(12)PheA and Eu-DTPA-BC(14)PheA equals 3.8% and 4.1%, respectively. The relaxivity r(1) per Gd(III) ion at 40 MHz and 310 K reaches a maximum value of 14.2 s(-1) mM(-1) for the Gd-DTPA-BC(12)PheA assemblies and 16.0 s(-1) mM(-1) for the micellar Gd-DTPA-BC(14)PheA assemblies compared to a value of 3.5 s(-1) mM(-1) for Gd-DTPA (Magnevist r). Theoretical fitting of the H-1 NMRD profiles results in tR values of 4.2 to 6.6 ns. The optimal concentration ratio of Gd/Eu compounds in the micelles in order to provide the required bimodal performance has been determined to be 20 : 1. In the search for other bimodal systems, this discovery can be used as a guideline concerning the load of paramagnetic agents with respect to luminescent probes.

Trivedi E.R., Eliseeva S.V., Jankolovits J., Olmstead M.M., Petoud S. and Pecoraro V.L.  (2014)

Highly Emitting Near-Infrared Lanthanide “Encapsulated Sandwich” Metallacrown Complexes with Excitation Shifted Toward Lower Energy

Journal of the American Chemical Society (2014) 136 (4) 1526-1534 - doi : 10.1021/ja4113337
Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide ?encapsulated sandwich ? MC complexes of the form Ln3+[12-MCZn(II),quinHA-4]2[24-MCZn(II),quinHA-8] (Ln3+[Zn(II)MCquinHA]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+[Zn(II)MCquinHA] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD ; Yb3+, QLnL = 2.88(2)%, τobs = 150.7(2) ?s ; Nd3+, QLnL = 1.35(1)%, τobs = 4.11(3) ?s ; Er3+, QLnL = 3.60(6)·10 ?2%, τobs = 11.40(3) ?s), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C ?H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties.

Near-infrared (NIR) luminescent lanthanide complexes hold great promise for practical applications, as their optical properties have several complementary advantages over organic fluorophores and semiconductor nanoparticles. The fundamental challenge for lanthanide luminescence is their sensitization through suitable chromophores. The use of the metallacrown (MC) motif is an innovative strategy to arrange several organic sensitizers at a well-controlled distance from a lanthanide cation. Herein we report a series of lanthanide ?encapsulated sandwich ? MC complexes of the form Ln3+[12-MCZn(II),quinHA-4]2[24-MCZn(II),quinHA-8] (Ln3+[Zn(II)MCquinHA]) in which the MC framework is formed by the self-assembly of Zn2+ ions and tetradentate chromophoric ligands based on quinaldichydroxamic acid (quinHA). A first-generation of luminescent MCs was presented previously but was limited due to excitation wavelengths in the UV. We report here that through the design of the chromophore of the MC assembly, we have significantly shifted the absorption wavelength toward lower energy (450 nm). In addition to this near-visible inter- and/or intraligand charge transfer absorption, Ln3+[Zn(II)MCquinHA] exhibits remarkably high quantum yields, long luminescence lifetimes (CD3OD ; Yb3+, QLnL = 2.88(2)%, τobs = 150.7(2) ?s ; Nd3+, QLnL = 1.35(1)%, τobs = 4.11(3) ?s ; Er3+, QLnL = 3.60(6)·10 ?2%, τobs = 11.40(3) ?s), and excellent photostability. Quantum yields of Nd3+ and Er3+ MCs in the solid state and in deuterated solvents, upon excitation at low energy, are the highest values among NIR-emitting lanthanide complexes containing C ?H bonds. The versatility of the MC strategy allows modifications in the excitation wavelength and absorptivity through the appropriate design of the ligand sensitizer, providing a highly efficient platform with tunable properties.


2013   Références trouvées : 4

Deiters,E., Eliseeva,S. V., Bünzli, J.-C. G.  (2013)

Self-assembly of a helical zinc-europium complex : speciation in aqueous solution and luminescence

Frontiers in Chemistry (2013) 1 (15) 1-35 - doi : 10.3389/fchem.2013.00015
Two new tridentate(NNO)-bidentate(NN) compartmental ligands, HL5 and HL6, are synthesized from pyridine and benzimidazole synthons. They react in aqueous solution under physiological conditions with ZnII, LnIII, or a mixture thereof, to yield complexes of different stoichiometries, 1:3, 2:2, 2:3, 1:1:3, the speciation of which is established by UV-visible titrations and ESI mass spectrometry. Photophysical studies of the EuIII-containing solutions in Tris-HCl 0.1 M (pH = 7.4) show that lanthanide luminescence arises from a unique N6O3 coordination site with pseudo D3 symmetry. Relevant parameters such as crystal field splitting, lifetime, radiative lifetime and intrinsic quantum yield perfectly match those reported for dinuclear 4f-4f helicates in which the EuIII ion has the same coordination environment.

Two new tridentate(NNO)-bidentate(NN) compartmental ligands, HL5 and HL6, are synthesized from pyridine and benzimidazole synthons. They react in aqueous solution under physiological conditions with ZnII, LnIII, or a mixture thereof, to yield complexes of different stoichiometries, 1:3, 2:2, 2:3, 1:1:3, the speciation of which is established by UV-visible titrations and ESI mass spectrometry. Photophysical studies of the EuIII-containing solutions in Tris-HCl 0.1 M (pH = 7.4) show that lanthanide luminescence arises from a unique N6O3 coordination site with pseudo D3 symmetry. Relevant parameters such as crystal field splitting, lifetime, radiative lifetime and intrinsic quantum yield perfectly match those reported for dinuclear 4f-4f helicates in which the EuIII ion has the same coordination environment.

Debroye, E., Eliseeva, S. V., Laurent, S., Elst, L. V., Muller, R. N., Parac-Vogt, T. N.  (2013)

Lanthanide(III) Complexes of Diethylenetriaminepentaacetic Acid (DTPA)–Bisamide Derivatives as Potential Agents for Bimodal (Optical/Magnetic Resonance) Imaging

European Journal of Inorganic Chemistry (2013) 2013 (14) 2629-2639 - doi : 10.1002/ejic.201300196
Diethylenetriaminepentaacetic acid (DTPA)–bisamide derivatives functionalized with p-toluidine, 6-aminocoumarin, 1-naphthalene methylamine and 4-ethynylaniline were synthesized and fully characterized by mass spectrometry, NMR spectroscopy, FTIR spectroscopy and elemental analysis. LnIII complexes (Ln = Gd, Eu, Tb, Y) of the ligands DTPA–bis-p-toluidineamide (DTPA–BTolA), DTPA–bis-6-coumarinamide (DTPA–BCoumA), DTPA–bis-1-naphthylmethylamide (DTPA–BNaphA) and DTPA–bis-4-ethynylphenylamide (DTPA–BEthA) were prepared and studied for their bimodal magnetic resonance imaging/optical properties. EuIII and TbIII derivatives in aqueous solutions exhibit characteristic red and green emission, respectively, with quantum yields of 0.73 % for EuIII–DTPA–BNaphA and 2.5 % for TbIII–DTPA–BEthA. Ligand-centred photophysical properties of the GdIII complexes were investigated to gain insight into energy-transfer processes that take place in these systems. The GdIII complexes were also analyzed by nuclear magnetic relaxation dispersion (NMRD) techniques. The relaxivity (r1) at 20 MHz and 310 K equals 4.1 s–1 mM–1 for Gd–DTPA–BTolA, 5.1 s–1 mM–1 for Gd–DTPA–BCoumA, 6.4 s–1 mM–1 for Gd–DTPA–BNaphA and 5.7 s–1 mM–1 for Gd–DTPA–BEthA. These values are higher than the value of 3.8 s–1 mM–1 for Gd–DTPA (Magnevist). The improved relaxivity is due to the increase in the rotational tumbling time τR with a factor of 1.6 for Gd–DTPA–BTolA, 2.1 for Gd–DTPA–BCoumA, 3.1 for Gd–DTPA–BNaphA and 6.5 for Gd–DTPA–BEthA. In a 4 % human serum albumin solution, the apparent relaxivity at 20 MHz increases to values of 13.9 and 19.1 s–1 mM–1 for Gd–DTPA–BNaphA and Gd–DTPA–BEthA, respectively. All these features assist the search for optimal bimodal optical and magnetic resonance imaging probes.

Diethylenetriaminepentaacetic acid (DTPA)–bisamide derivatives functionalized with p-toluidine, 6-aminocoumarin, 1-naphthalene methylamine and 4-ethynylaniline were synthesized and fully characterized by mass spectrometry, NMR spectroscopy, FTIR spectroscopy and elemental analysis. LnIII complexes (Ln = Gd, Eu, Tb, Y) of the ligands DTPA–bis-p-toluidineamide (DTPA–BTolA), DTPA–bis-6-coumarinamide (DTPA–BCoumA), DTPA–bis-1-naphthylmethylamide (DTPA–BNaphA) and DTPA–bis-4-ethynylphenylamide (DTPA–BEthA) were prepared and studied for their bimodal magnetic resonance imaging/optical properties. EuIII and TbIII derivatives in aqueous solutions exhibit characteristic red and green emission, respectively, with quantum yields of 0.73 % for EuIII–DTPA–BNaphA and 2.5 % for TbIII–DTPA–BEthA. Ligand-centred photophysical properties of the GdIII complexes were investigated to gain insight into energy-transfer processes that take place in these systems. The GdIII complexes were also analyzed by nuclear magnetic relaxation dispersion (NMRD) techniques. The relaxivity (r1) at 20 MHz and 310 K equals 4.1 s–1 mM–1 for Gd–DTPA–BTolA, 5.1 s–1 mM–1 for Gd–DTPA–BCoumA, 6.4 s–1 mM–1 for Gd–DTPA–BNaphA and 5.7 s–1 mM–1 for Gd–DTPA–BEthA. These values are higher than the value of 3.8 s–1 mM–1 for Gd–DTPA (Magnevist). The improved relaxivity is due to the increase in the rotational tumbling time τR with a factor of 1.6 for Gd–DTPA–BTolA, 2.1 for Gd–DTPA–BCoumA, 3.1 for Gd–DTPA–BNaphA and 6.5 for Gd–DTPA–BEthA. In a 4 % human serum albumin solution, the apparent relaxivity at 20 MHz increases to values of 13.9 and 19.1 s–1 mM–1 for Gd–DTPA–BNaphA and Gd–DTPA–BEthA, respectively. All these features assist the search for optimal bimodal optical and magnetic resonance imaging probes.

Suffren Y., Zare D., Eliseeva, S.V., Guénée L., Nozary H., Lathion T., Aboshyan-Sorgho L., Petoud S., Hauser A. and Piguet C.  (2013)

Near-Infrared to Visible Light-Upconversion in Molecules : From Dream to Reality

The Journal of Physical Chemistry C (2013) 117 (51) 26957-26963 - doi : 10.1021/jp4107519
Light-upconversion via stepwise energy transfer from a sensitizer to an activator exploits linear optics for converting low-energy infrared or near-infrared incident photons to higher energy emission. This approach is restricted to activators possessing intermediate long-lived excited states such as those found for trivalent lanthanide cations dispersed in solid-state matrices. When the activator is embedded in a molecular complex, efficient nonradiative relaxation processes usually reduce excited state lifetimes to such an extent that upconversion becomes too inefficient to be detected under practical excitation intensities. Theoretical considerations presented here predict that the combination of at least two millisecond time scale sensitizers with a central lanthanide activator in supramolecular complexes circumvents this bottleneck by creating a novel upconversion pathway, in which successive excitations are stored on the sensitizers prior to inducing stepwise energy transfer processes. Application of this concept to the chromium/erbium pair demonstrates that strong-field trivalent chromium chromophores irradiated with near-infrared photons produce upconverted green erbium-centered emission in discrete dinuclear and trinuclear triple-stranded helicates.

Light-upconversion via stepwise energy transfer from a sensitizer to an activator exploits linear optics for converting low-energy infrared or near-infrared incident photons to higher energy emission. This approach is restricted to activators possessing intermediate long-lived excited states such as those found for trivalent lanthanide cations dispersed in solid-state matrices. When the activator is embedded in a molecular complex, efficient nonradiative relaxation processes usually reduce excited state lifetimes to such an extent that upconversion becomes too inefficient to be detected under practical excitation intensities. Theoretical considerations presented here predict that the combination of at least two millisecond time scale sensitizers with a central lanthanide activator in supramolecular complexes circumvents this bottleneck by creating a novel upconversion pathway, in which successive excitations are stored on the sensitizers prior to inducing stepwise energy transfer processes. Application of this concept to the chromium/erbium pair demonstrates that strong-field trivalent chromium chromophores irradiated with near-infrared photons produce upconverted green erbium-centered emission in discrete dinuclear and trinuclear triple-stranded helicates.

Zaim A., Natalia Dalla F., Guenee L., Nozary H., Hoang Thi Nhu Y., Svetlana V. E., Petoud S. and Piguet C.  (2013)

Lanthanide hexafluoroacetylacetonates vs. nitrates for the controlled loading of luminescent polynuclear single-stranded oligomers

Chemical Science 4 (3) 1125-1136
This work demonstrates how minor structural and electronic changes between Ln(NO3)3 and Ln(hfac)3 lanthanide carriers (Ln = trivalent lanthanide, hfac = hexafluoroacetylacetonate) lead to opposite thermodynamic protocols for the metal loading of luminescent polynuclear single-stranded oligomers. Whereas metal clustering is relevant for Ln(hfac)3, the successive fixation of Ln(NO3)3 provides stable microspecies with an alternated occupancy of the binding sites. Partial anion dissociation and anion/ligand bi-exchange processes occur in polar aprotic solvents, which contribute to delay the unambiguous choice of a well-behaved neutral lanthanide carrier for the selective complexation of different trivalent lanthanides along a single ligand strand. Clues for further improvement along this stepwise strategy are discussed.

This work demonstrates how minor structural and electronic changes between Ln(NO3)3 and Ln(hfac)3 lanthanide carriers (Ln = trivalent lanthanide, hfac = hexafluoroacetylacetonate) lead to opposite thermodynamic protocols for the metal loading of luminescent polynuclear single-stranded oligomers. Whereas metal clustering is relevant for Ln(hfac)3, the successive fixation of Ln(NO3)3 provides stable microspecies with an alternated occupancy of the binding sites. Partial anion dissociation and anion/ligand bi-exchange processes occur in polar aprotic solvents, which contribute to delay the unambiguous choice of a well-behaved neutral lanthanide carrier for the selective complexation of different trivalent lanthanides along a single ligand strand. Clues for further improvement along this stepwise strategy are discussed.


2012   Références trouvées : 4

Debroye, E., Dehaen, G., Eliseeva, S. V. Laurent, S., Vander Elst, L., Muller, R. N., Binnemans, K., Parac-Vogt, T. N.  (2012)

A new metallostar complex based on an aluminum(iii) 8-hydroxyquinoline core as a potential bimodal contrast agent

Dalton Transactions (2012) 41 (35) 10549-10556 - doi : 10.1039/C2DT30605K
A ditopic DTPA monoamide derivative containing an 8-hydroxyquinoline moiety was synthesized and the corresponding gadolinium(iii) complex ([Gd(H5)(H2O)]-) was prepared. After adding aluminum(iii), the 8-hydroxyquinoline part self-assembled into a heteropolymetallic triscomplex [(Gd5)3Al(H2O)3]3-. The magnetic and optical properties of this metallostar compound were investigated in order to classify it as a potential in vitro bimodal contrast agent. The proton nuclear magnetic relaxation dispersion measurements indicated that the relaxivity r1 of [Gd(H5)(H2O)]- and [(Gd5)3Al(H2O)3]3- at 20 MHz and 310 K equaled 6.17 s-1 mM-1 and 10.9 s-1 mM-1 per Gd(iii) ion respectively. This corresponds to a relaxivity value of 32.7 s-1 mM-1 for the supramolecular complex containing three Gd(iii) ions. The high relaxivity value is prominently caused by an increase of the rotational tumbling time [small tau]R by a factor of 2.7 and 5.5 respectively, in comparison with the commercially used MRI contrast agent Gd(iii)-DTPA (Magnevist[registered sign]). Furthermore, upon UV irradiation, [(Gd5)3Al(H2O)3]3- exposes green broad-band emission with a maximum at 543 nm. Regarding the high relaxivity and the photophysical properties of the [(Gd5)3Al(H2O)3]3- metallostar compound, it can be considered as a lead compound for in vitro bimodal applications.

A ditopic DTPA monoamide derivative containing an 8-hydroxyquinoline moiety was synthesized and the corresponding gadolinium(iii) complex ([Gd(H5)(H2O)]-) was prepared. After adding aluminum(iii), the 8-hydroxyquinoline part self-assembled into a heteropolymetallic triscomplex [(Gd5)3Al(H2O)3]3-. The magnetic and optical properties of this metallostar compound were investigated in order to classify it as a potential in vitro bimodal contrast agent. The proton nuclear magnetic relaxation dispersion measurements indicated that the relaxivity r1 of [Gd(H5)(H2O)]- and [(Gd5)3Al(H2O)3]3- at 20 MHz and 310 K equaled 6.17 s-1 mM-1 and 10.9 s-1 mM-1 per Gd(iii) ion respectively. This corresponds to a relaxivity value of 32.7 s-1 mM-1 for the supramolecular complex containing three Gd(iii) ions. The high relaxivity value is prominently caused by an increase of the rotational tumbling time [small tau]R by a factor of 2.7 and 5.5 respectively, in comparison with the commercially used MRI contrast agent Gd(iii)-DTPA (Magnevist[registered sign]). Furthermore, upon UV irradiation, [(Gd5)3Al(H2O)3]3- exposes green broad-band emission with a maximum at 543 nm. Regarding the high relaxivity and the photophysical properties of the [(Gd5)3Al(H2O)3]3- metallostar compound, it can be considered as a lead compound for in vitro bimodal applications.

Verwilst, P. Eliseeva, S. V. Vander Elst, L. Burtea, C. Laurent, S. Petoud, S. Muller, R. N. Parac-Vogt, T. N. De Borggraeve, W. M.  (2012)

A tripodal ruthenium-gadolinium metallostar as a potential α(v)β(3) integrin specific bimodal imaging contrast agent

Inorganic Chemistry (2012) 51 (11) 6405-6411 - doi : 10.1021/ic300717m
Gd-III-containing metallostar contrast agents are gaining increased attention, because their architecture allows for a slower tumbling rate, which, in turn, results in larger relaxivities. So far, these metallostars find possible applications as blood pool contrast agents. In this work, the first example of a tissue-selective metallostar contrast agent is described. This RGD-peptide decorated Ru-II(Gd-III)(3) metallostar is synthesized as an alpha(v)beta(3)-integrin specific contrast agent, with possible applications in the detection of atherosclerotic plaques and tumor angiogenesis. The contrast agent showed a relaxivity of 9.65 s(-1) mM(-1), which represents an increase of 170%, compared to a low-molecular-weight analogue, because of a decreased tumbling rate (tau(R) = 470 ps). The presence of the MLCT band (absorption 375-500 nm, emission 525-850 nm) of the central Ru-II(Ph-Phen)(3)-based complex grants the metallostar attractive luminescent properties. The (MLCT)-M-3 emission is characterized by a quantum yield of 4.69% and a lifetime of 804 ns, which makes it an interesting candidate for time-gated luminescence imaging. The potential application as a selective MRI contrast agent for alpha(v)beta(3)-integrin expressing tissues is shown by an in vitro relaxometric analysis, as well as an in vitro T-1-weighted MR image.

Gd-III-containing metallostar contrast agents are gaining increased attention, because their architecture allows for a slower tumbling rate, which, in turn, results in larger relaxivities. So far, these metallostars find possible applications as blood pool contrast agents. In this work, the first example of a tissue-selective metallostar contrast agent is described. This RGD-peptide decorated Ru-II(Gd-III)(3) metallostar is synthesized as an alpha(v)beta(3)-integrin specific contrast agent, with possible applications in the detection of atherosclerotic plaques and tumor angiogenesis. The contrast agent showed a relaxivity of 9.65 s(-1) mM(-1), which represents an increase of 170%, compared to a low-molecular-weight analogue, because of a decreased tumbling rate (tau(R) = 470 ps). The presence of the MLCT band (absorption 375-500 nm, emission 525-850 nm) of the central Ru-II(Ph-Phen)(3)-based complex grants the metallostar attractive luminescent properties. The (MLCT)-M-3 emission is characterized by a quantum yield of 4.69% and a lifetime of 804 ns, which makes it an interesting candidate for time-gated luminescence imaging. The potential application as a selective MRI contrast agent for alpha(v)beta(3)-integrin expressing tissues is shown by an in vitro relaxometric analysis, as well as an in vitro T-1-weighted MR image.

Lemonnier, J. F., Babel, L., Guénée, L., Mukherjee, P., Waldeck, D. H., Eliseeva, S. V., Petoud, S., and Piguet, C.  (2012)

Perfluorinated Aromatic Spacers for Sensitizing Europium(III) Centers in Dinuclear Oligomers : Better than the Best by Chemical Design ?

Angewandte Chemie International Edition 51 (45) 11302-11305
Transfer news : The use of a simple method allows the various sensitization steps in Eu(III) -containing complexes to be deciphered. Incorporation of an increasing number of electron-withdrawing fluorine atoms on the rigid and electronically tunable phenyl spacer between two tridentate binding units (see picture, red O, dark blue N) affects the quantum yield, intersystem crossing, and energy transfer processes in a rational way.

Transfer news : The use of a simple method allows the various sensitization steps in Eu(III) -containing complexes to be deciphered. Incorporation of an increasing number of electron-withdrawing fluorine atoms on the rigid and electronically tunable phenyl spacer between two tridentate binding units (see picture, red O, dark blue N) affects the quantum yield, intersystem crossing, and energy transfer processes in a rational way.

Aboshyan-Sorgho, L., Nozary, H., Aebischer, A., Bünzli, J.C., Morgantini, P.Y., Kittilstved, K.R., Hauser, A., Eliseeva, S.V., Petoud, S. and Piguet, C.  (2012)

Optimizing Millisecond Time Scale Near-Infrared Emission in Polynuclear Chrome(III)-Lanthanide(III) Complexes

J Am Chem Soc.134 (30) 12675-12684
This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF(3)SO(3))(2) (M = Cr, Zn) and Ln(CF(3)SO(3))(3) (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D(3)-symmetrical trinuclear [MLnM(L2)(3)](CF(3)SO(3))(n) complexes (M = Zn, n = 7 ; M = Cr, n = 9), in which the central lanthanide activator is sandwiched between the two transition metal cations. Visible or NIR irradiation of the peripheral Cr(III) chromophores in [CrLnCr(L2)(3)](9+) induces rate-limiting intramolecular intermetallic Cr→Ln energy transfer processes (Ln = Nd, Er, Yb), which eventually produces lanthanide-centered near-infrared (NIR) or IR emission with apparent lifetimes within the millisecond range. As compared to the parent dinuclear complexes [CrLn(L1)(3)](6+), the connection of a second strong-field [CrN(6)] sensitizer in [CrLnCr(L2)(3)](9+) significantly enhances the emission intensity without perturbing the kinetic regime. This work opens novel exciting photophysical perspectives via the buildup of non-negligible population densities for the long-lived doubly excited state [Cr*LnCr*(L2)(3)](9+) under reasonable pumping powers.

This work illustrates a simple approach for optimizing long-lived near-infrared lanthanide-centered luminescence using trivalent chromium chromophores as sensitizers. Reactions of the segmental ligand L2 with stoichiometric amounts of M(CF(3)SO(3))(2) (M = Cr, Zn) and Ln(CF(3)SO(3))(3) (Ln = Nd, Er, Yb) under aerobic conditions quantitatively yield the D(3)-symmetrical trinuclear [MLnM(L2)(3)](CF(3)SO(3))(n) complexes (M = Zn, n = 7 ; M = Cr, n = 9), in which the central lanthanide activator is sandwiched between the two transition metal cations. Visible or NIR irradiation of the peripheral Cr(III) chromophores in [CrLnCr(L2)(3)](9+) induces rate-limiting intramolecular intermetallic Cr→Ln energy transfer processes (Ln = Nd, Er, Yb), which eventually produces lanthanide-centered near-infrared (NIR) or IR emission with apparent lifetimes within the millisecond range. As compared to the parent dinuclear complexes [CrLn(L1)(3)](6+), the connection of a second strong-field [CrN(6)] sensitizer in [CrLnCr(L2)(3)](9+) significantly enhances the emission intensity without perturbing the kinetic regime. This work opens novel exciting photophysical perspectives via the buildup of non-negligible population densities for the long-lived doubly excited state [Cr*LnCr*(L2)(3)](9+) under reasonable pumping powers.