Les doctorants de 1ère année présentent leurs sujets de thèses


Doctorants de 1ère année, de haut en bas et de gauche à droite :
Gilles Metrard, Johnathan Black, Océane Quin, Gilles Le Rouzic, Simon Héry, Audrey Roussel, Daniela Teixeira, Abdoul Kaboré, Ayena Kossi, Aanchal Mishra, Steevens Bouaziz , Petra Cutuk.

Sujets des thèses :

Département "Aspects Moléculaires du Vivant" :
Johnathan Black "Discovery of new riboswitches by very large-scale enzymatic screening"
Aanchal Mishra "Mechanisms of protein SUMOylation: understanding through the lenses of SUMO-SIM enigma"
Emma Leborgne "Study of sequence-activity relationships and the structure of alterocin and antibiofilms secreted by a marine bacterium"
Audrey Roussel "Towards a new anti-cancer therapy targeting microtubules"

Département "Biologie et Biophysique des récepteurs, Applications translationnelles (BioBRAT)"
Abdoul Kaboré "Functionnal details of biased signaling elicited by serotonin 5HT7 receptor"
Ayena Kossi "Therapeutic properties of cannabinoids and development of their pharmacological applications"
Océane Quin "Development o f cellular and molecular tools for the study of the mechanisms of action of phytocannabinoids in the skin"

Département "Chimie Imagerie et Exobiologie"
Petra Cutuk "Regulation of SKCa channels by cAMP/PKA pathway in cancer cells: development of novel near-infrared optical imaging tools"
Léa Diebold "Towards tumour theranostics: hypoxia activation as a tool for therapy and diagnostics"
Simon Héry "Novel  metal-based agents for selective amyloid imaging"
Gilles Le Rouzic "Quantitation in SPECT cardiology 3D CZT camera contribution"
Gilles Metrard "4D dynamic images in SPECT/CT"
Daniela Teixeira "Manganese(III) porphyrin and hemiporphyrazine complexes: towards safer, more selective and efficient MRI contrast agents"

Département "NanoMatériaux et NanoSondes"
Steevens Bouaziz "Autologous production of biological drugs: AutomAb project"
Laura Divoux "Natural deep eutectic solvents - based formulations for skin care"

Les travaux de chercheurs du CBM sur l’épiderme mis en avant par l’Institut de Chimie du CNRS

L'Institut de Chimie du CNRS a publié dans sa rubrique "Actualités" un article signalant les recherches sur l'épiderme de l'équipe "Biologie cutanée et microenvironnement", dirigée par le Docteur Catherine Grillon.

Actuellement, les modèles 3D de peau, en culture in vitro, sont développés dans les conditions d’oxygène de l’air ambiant, soit 18 à 20%. Pourtant, à l’intérieur de la peau, le taux d’oxygène physiologique est beaucoup plus bas, notamment dans la couche basale de l’épiderme où il descend entre 1 et 3%. Dans ces conditions les modèles actuels sont-ils véritablement représentatifs de l’état physiologique de notre peau ?

Pour répondre à cette question, les scientifiques de l'équipe "Biologie cutanée et microenvironnement" ont reconstruit de nouveaux modèles 3D d’épiderme respectant le taux réel d’oxygène physiologique dans la peau. Ils ont montré que le taux d’oxygène influe sur l'épaisseur de la peau et qu'il contrôle les défenses antioxydantes des cellules de l'épiderme.

Ce travail démontre qu’il est important de prendre en compte le taux réel d'oxygène physiologique pour comprendre le fonctionnement des cellules de l’épiderme en condition in vitro.

Voir l'actualité sur le site de l'Institut de Chimie du CNRS

Référence

Chettouh-Hammas N, Fasani F, Boileau A, Gosset D, Busco G & Grillon C.
Improvement of Antioxidant Defences in Keratinocytes Grown in Physioxia: Comparison of 2D and 3D Models.
Oxid Med Cell Longev. 2023

https://doi.org/10.1155/2023/6829931

Impact de l’oxygène sur les défenses antioxydantes de notre peau : un nouveau modèle 3D d’épiderme plus physiologique

Les modèles 3D in vitro de peau, plus ou moins complexes, sont tous développés dans les conditions d’oxygène de l’air ambiant, soit 18 à 20% et sont largement utilisés pour étudier les mécanismes régissant les fonctions cutanées ou pour le criblage de nombreuses molécules à visée pharmaceutique ou cosmétique. Pourtant, dans la peau, le taux d’oxygène physiologique est beaucoup plus bas, notamment dans la couche basale de l’épiderme où il descend entre 1 et 3%. En culture in vitro, les cellules cutanées se trouvent donc en hyperoxie. Ces modèles sont-ils représentatifs de l’état physiologique de notre peau ?

Pour étudier cela, des chercheurs de l’équipe « Biologie cutanée et microenvironnement » ont développé des nouveaux modèles in vitro, 2D et 3D, dans les conditions d’oxygène du microenvironnement physiologique cutané. Ils ont montré que le taux d’oxygène influe sur la prolifération des kératinocytes ce qui conduit à des différences morphologiques dans les épidermes reconstruits. Le taux d’oxygène étant important dans la production de radicaux libres, molécules accélérant le vieillissement cutané, les chercheurs ont étudié les défenses antioxydantes des cellules dans ces cultures. Ils ont ainsi montré que l’activité antioxydante était accrue en condition physiologique, soit par une surexpression, soit par une suractivation des enzymes.

Ce travail montre que le taux d’oxygène contrôle les défenses antioxydantes des cellules de la peau et qu’il est important de tenir compte de ce paramètre pour reproduire au mieux les conditions physiologiques.

Improvement of Antioxidant Defences in Keratinocytes Grown in Physioxia: Comparison of 2D and 3D Models.
Chettouh-Hammas N, Fasani F, Boileau A, Gosset D, Busco G, Grillon C. Oxid Med Cell Longev. 2023 Jun 17;2023:6829931.
doi : https://doi.org/10.1155/2023/6829931