Dynamique du recrutement de l’enzyme de réparation de l’ADN OGG1 à la chromatine endommagée suite à un stress oxydant

Nos cellules sont constamment exposées aux espèces réactives de l’oxygène qui peuvent induire des lésions sur l’ADN et compromettre ainsi la stabilité des génomes nucléaire et mitochondrial et sont à l’origine de plusieurs maladies humaines telles que le cancer ou les maladies neurodégénératives.

L'ADN glycosylase OGG1 supervise la détection et l'élimination de la 7,8-dihydro-8-oxoguanine (8-oxoG), qui est une des bases oxydées la plus fréquemment induite par le stress oxydant. Cette lésion très mutagène a peu d’effet sur la structure native de l’ADN et sa détection nécessite une inspection minutieuse des bases par OGG1 via un mécanisme qui n'est que partiellement compris.

Des chercheurs du CBM, en collaboration avec les équipes de Sébastien Huet (IGDR, Université de Rennes) et d’Anna Campalans (IRCM, CEA-Fontenay-aux-Roses), ont caractérisé ce processus grâce à une complémentarité d’approches allant de l’analyse biochimique de l’interaction entre OGG1 et l’ADN à l’imagerie de cellules vivantes exprimant OGG1 marqué par fluorescence. Les données obtenues mettent en évidence le rôle essentiel de résidus conservés d’OGG1 contactant la 8-oxoG ou le brin d’ADN adjacent, dans le processus de détection et d’accumulation des lésions. La dynamique d'OGG1 a été suivie dans le noyau de cellules humaines en situation basale et après l’induction de la 8-oxoG par micro-irradiation laser. Il a été observé que OGG1 échantillonne constamment l'ADN en alternant rapidement entre la diffusion dans le nucléoplasme et de courts transits sur l'ADN. Le processus d'échantillonnage est étroitement régulé par le résidu conservé G245 qui est crucial pour le recrutement rapide d'OGG1 sur les lésions oxydatives induites par micro-irradiation laser. De plus, les résidus Y203, N149 et N150, impliqués dans les premiers stades de la recherche de la 8-oxoG, régulent de façon différentielle l’identification de la lésion et le recrutement de la protéine de réparation sur les lésions oxydatives.

Ostiane D’Augustin, Virginie Gaudon, Capucine Siberchicot, Rebecca Smith, Catherine Chapuis, Jordane Depagne, Xavier Veaute, Didier Busso, Anne-Marie Di Guilmi, Bertrand Castaing, J Pablo Radicella, Anna Campalans, Sébastien Huet
Identification of key residues of the DNA glycosylase OGG1 controlling efficient DNA sampling and recruitment to oxidized bases in living cells
Nucleic Acids Research, 2023;, gkad243, https://doi.org/10.1093/nar/gkad243

Contact : bertrand.castaing@cnrs-orleans.fr

Présentations des doctorants de 1ère année

Les 9 doctorants de première année du CBM ont présenté leurs sujets de thèses à leurs collègues lors d'une session posters qui s'est déroulée le 7 mars 2023.

Les nouveaux doctorants sont :

  • Lylia Azzoug, dans l'équipe "Protéines de synthèse et chimie bioorthogonale"
  • Sara Ben Jemaa et Adrien Uguen, dans l'équipe "Complexes métalliques et IRM"
  • Ivan Ciganek, dans l'équipe " Thérapies innovantes et nanomédecine"
  • Thuy-Duong Do, dans l'équipe "Remodelage de l'ADN : structures et mécanismes"
  • Sebastian Gfellner et Pamela Guerillot, dans l'équipe "Exobiologie"
  • Lucija Mance, dans l'équipe "Modifications post-traductionnelles des protéines et réparation de l'ADN"
De bas en haut et de gauche à droite : Sebastian GFELLNER, Sara BEN JEMAA, Giuliano MIGLIORINI, Lylia AZZOUG, Pamela GUERILLOT, Ivan CIGANEK, Adrien UGUEN, Lucija MANCE, Thuy-Duong DO

La Ligue contre le cancer soutient des recherche menées dans le Loiret

Les comités de la Ligue contre le cancer du Grand Ouest regroupant la Bretagne, les Pays de la Loire, le Centre-Val de Loire et le Poitou-Charentes mutualisent leurs ressources pour soutenir les chercheurs en cancérologie.

Le Mardi 7 février au CBM, La Ligue contre le cancer a remis officiellement un chèque de 146 000 € pour soutenir 6 équipes de chercheurs du CBM et de l'INEM (Laboratoire d'Immunologie et Neurogénétique Expérimentales et Moléculaire). Les projets soutenus visent à aboutir rapidement à des retombées concrètes au bénéfice des malades.

Etaient présents les comités du Loiret (représenté par son Administrateur bénévole, le Docteur Jean-Louis Vaur) et de l’Eure-et-Loir (représenté par son Vice-Président bénévole Monsieur Jacques Dautreme). Les comités du Loir-et-Cher, du Cher et du Morbihan également financeurs n’ont pas pu être présents mais ont fait savoir qu’ils étaient heureux de pouvoir contribuer au financement de la recherche régionale.

Monsieur Jean-Marc Schneider de La République du Centre est venu immortaliser ce moment en faisant un tour de table permettant à chacun d’exposer son projet ainsi que les retombées et les avancées à venir.

Marcin Suskiewicz, chargé de recherche au CBM, a obtenu une bourse ERC Starting 2022

La SUMOylation est une réaction naturelle qui change la structure des protéines dans les cellules. Grâce à son projet ERC SUMOwriteNread, Marcin Suskiewicz du CBM veut caractériser le mécanisme par lequel elle se produit, ainsi que ses effets sur les propriétés des protéines. Cette réaction reste en effet mal comprise alors qu’elle joue vraisemblablement un rôle essentiel dans nos cellules.

En savoir plus sur le site de l'Institut de Chimie du CNRS

Une avancée majeure sur la compréhension de la réparation des lésions dans l’ADN

L’équipe « Réparation de l’ADN : structure, fonction et dynamique» vient de dévoiler, dans la prestigieuse revue Nucleic Acid Research, comment les ADN glycosylases d’archées font pour reconnaître et réparer, au niveau moléculaire, certaines lésions dans leur ADN.

Pour en savoir plus :
Structural and functional determinants of the archaeal 8-oxoguanine-DNA glycosylase AGOG for DNA damage recognition and processing
Coste Franck, Goffinont Stéphane, Cros Julien, Gaudon Virginie, Guérin Martine, Garnier Norbert, Confalonieri Fabrice, Flament Didier, Suskiewicz Marcin Josef, Castaing Bertrand https://doi.org/10.1093/nar/gkac932

Identification of a ‘double‘ protein post-translational modification

Proteins are the main ‘molecular machines’ of the cell. To efficiently perform their tasks, they have to be dynamically switched on and off, recruited to specific cellular locations, and degraded in a timely manner. One of the main mechanisms that regulate these processes is temporary covalent attachment, to a protein, of extra regulatory elements known as protein post-translational modifications. The modification reaction is catalysed by specific enzymes and can lead to changes in protein activity, localisation, or half-life. Two of the common protein modifications are ubiquitin and ADP-ribose, each of which can be linked directly to a protein substrate.

In the study published in Science Advances, an international team of researchers, including Vincent Aucagne, Marcin Suskiewicz, and Hervé Meudal from the CBM in Orléans, led by Ivan Ahel and Dragana Ahel groups at the University of Oxford, have demonstrated that these two individual modifications can be joined together, producing a ‘double’ protein modification. The enzymes responsible for this process are DELTEX E3 ligases, which can efficiently attach ubiquitin to protein-linked ADP-ribose. A key contribution of Orléans scientists to the project was the analysis of the ubiquitin-ADP-ribose linkage performed using mass spectrometry (MS) and nuclear magnetic resonance (NMR) equipment of the new MOV2ING platform in Orléans.

The study shows that different protein modifications can be joined together to either combine two regulatory signals or produce a third, distinct signal, with a specific function. This shows previously unappreciated level of complexity in protein regulation.

While the role of ubiquitin-ADP-ribose in cells remains unclear, DELTEX enzymes have previously been linked to both development and antiviral response. The authors showed that the SARS-CoV-2 virus possesses enzymes that can remove the new modification, possibly allowing the virus to inhibit the host immune response.

Références :
Kang Zhu, Marcin J. Suskiewicz, Hloušek-Kasun, Hervé Meudal, Andreja Mikoč, Vincent Aucagne, Dragana Ahel and Ivan Ahel
DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates
Science Advances, 5 Oct 2022, Vol 8, Issue 40 DOI: 10.1126/sciadv.add4253