Comprendre l’influence de la chimie de l’océan sur les premiers écosystèmes terrestres en étudiant les métallomes, ces éléments métalliques nécessaires au vivant.

Etudier les premières traces de vie est particulièrement délicat. Beaucoup de travaux se limitent à des approches basse résolution ou sont centrés autour d’une unique technique.

Nous avons initié une nouvelle approche pour étudier cette vie ancienne : utiliser la distribution des éléments traces métalliques et de la matière carbonée. Pour ce faire, nous avons utilisé plusieurs méthodes : la microsonde nucléaire PIXE (Particle-Induced X-ray Emission Spectroscopy en anglais), l’analyse géochimique isotopique du carbone et la microscopie électronique. Ceci nous a permis de découvrir des signatures du vivant sous forme d’éléments traces dans des roches d’Afrique du Sud âgées de 3,3 milliards d’années. Les enrichissements en métaux observés reflètent l’habitat de cette vie primitive qui était alors fortement influencé par l’activité hydrothermale. Ces signatures confortent ainsi l’hypothèse de longue date selon laquelle la dépendance du vivant aux éléments traces est directement liée à la concentration de ces éléments dans l’environnement hydrothermal riche en métaux où la vie se développe.

Cette étude s’est appuyée sur le concept de métallome qui correspond à l’ensemble des espèces inorganiques (métaux et métalloïdes) présents dans une cellule. En effet, bien que le génome et le protéome ne survivent pas à la fossilisation sur plusieurs milliards d’années, il était probable que la concentration en métaux dans la matière carbonée soit préservée. Nos analyses montrent en effet que c’est le cas dans de nombreuses microstructures riches en carbone observés dans les roches de Josefsdal en Afrique du Sud.

Nous avons ainsi trouvé qu’une gamme d’éléments cruciaux pour la vie anaérobie, tels que Fe, V, Ni, As et Co, étaient plus concentrés dans la matière carbonée caractérisée par des signatures isotopiques de carbone négatives, c’est-à-dire en accord avec une origine biologique. Mo et Zn, des contributions récentes au métallome, étaient absents. Nous proposons que, malgré l’absence de préservation cellulaire, la signature observée de l’enrichissement en métaux dans la matière organique démontre son origine biologique. De plus, il est possible de reconstruire des métabolismes à partir de ces « paléo-métallomes » fossilisés. En effet, la présence de Fe, V, Ni et Co suggère des consortiums d’organismes lithotrophiques ou organotrophiques utilisant le cycle du méthane ou de l’azote.

La composition de ce « paléo-métallome » pourrait permettre de comprendre les réseaux métaboliques des plus anciens écosystèmes terrestres et pourrait potentiellement servir de biosignatures lors de l’analyse de la matière organique à la surface de Mars. Cependant, la microscopie haute-résolution reste indispensable pour écarter la possibilité que de tels enrichissements soient simplement la signature élémentaire de micro-minéraux. Cette étude met également en lumière l’importance de l’approche multi-techniques pour l’étude des plus anciennes traces de vie.

L’article “Metallomics in deep time and the influence of ocean chemistry on the metabolic landscapes of Earth’s earliest ecosystems” est paru le 18 mars 2020 dans la revue Scientific Reports.

Contacts: keyron.hickman-lewis@cnrs.fr; frances.westall@cnrs.fr

Une simulation numérique pour mieux sélectionner les médicaments avant les essais cliniques

Des chimistes de l’Institut de chimie organique et analytique (ICOA, CNRS/Université d’Orléans) et du Centre de biophysique moléculaire (CBM, CNRS) proposent un nouveau modèle in silico, qui décrit la durée des interactions entre une molécule et sa cible biologique. Publiés dans le Journal of Chemical Information and Modeling, ces travaux ont prédit avec succès des effets sur une protéine liée à certains cancers et aident à diminuer les doses et ainsi la toxicité.

Voir la communication de l'Institut de Chimie du CNRS

 

Peptides antimicrobiens : une défensine aviaire atypique à double domaine, spécifique des œufs, révèle de multiples rôles dans la protection de l’embryon

Lire le communiqué de presse du CNRS

Gga-AvBD11, la β-défensine aviaire 11 du poulet commun Gallus gallus (Gga-AvBD11), est spécifique à l'œuf et représente la seule défensine de double taille (9,3 kDa) parmi les 14 AvBDs identifiées chez les espèces aviaires. L'apparition d'une telle protéine à double domaine au cours de l'évolution pourrait être motivée par une augmentation de son efficacité biologique par rapport à une molécule à simple domaine et / ou par la nécessité d'acquérir de nouvelles fonctions portées uniquement par la protéine entière. Pour évaluer la contribution des deux domaines, nous les avons synthétisés chimiquement. Nous avons résolu par RMN la structure 3D de chaque domaine, ainsi que celle de la protéine entière, composée de deux domaines β-défensine compactés. Il n'y a aucune référence pour une telle double-β-défensine dans les banques de données structurales. Ainsi, AvBD11 est l'archétype d'une nouvelle famille structurale, que nous avons nommée Av-DBD (avian-double-beta-defensin).

Sa forte conservation de séquence chez les oiseaux suggère des rôles essentiels dans l'oeuf. En collaboration avec plusieurs équipes (Nouzilly et Tours, France), nous avons montré que la protéine Gga-AvBD11 présente des activités antimicrobiennes contre les pathogènes Gram + et Gram-bactériens, le protozoaire aviaire Eimeria tenella et le virus de la grippe aviaire (H1N1). Nous avons également montré des activités cytotoxiques et anti-invasives, suggérant qu'il pourrait être impliqué dans la (re)modélisation des tissus embryonnaires. Nos résultats indiquent une importance critique du domaine cationique N-ter dans la médiation des activités antibactériennes, antiparasitaires et anti-invasives, le domaine C-ter potentialisant les deux dernières activités. De façon frappante, l'activité antivirale dans les cellules de poulet infectées nécessite la protéine entière.

L'avantage pour les espèces aviaires de posséder une double défensine est une question fascinante. Nous poursuivons les études de relations structure-activité et phylogénétiques au sein de la famille AvBD11 grâce au soutien  de la Région Centre Val de Loire (projet SAPhyR-11).

Ce travail a été financé par les subventions de projets MUSE (Subvention n ° 2014-00094512) et SAPhyR-11 (Subvention n ° 2017-119983) de la Région Centre-Val de Loire.

Structure, function, and evolution of Gga-AvBD11, the archetype of the structural avian-double-β-defensin family
Nicolas Guyot, Hervé Meudal, Sascha Trapp, Sophie Iochmann, Anne Silvestre, Guillaume Jousset, Valérie Labas, Pascale Reverdiau, Karine Loth, Virginie Hervé, Vincent Aucagne, Agnès F. Delmas, Sophie Rehault-Godbert, and Céline Landon

Peptides antimicrobiens : comment la chimie et la RMN des peptides éclairent l’activité antimicrobienne des big défensines

Les big défensines, ancêtres des β-défensines, sont composées d'un domaine de type β-défensine et d'un domaine ancestral hydrophobe. Cette structure unique se retrouve dans un nombre limité d'espèces marines phylogénétiquement éloignées.

En utilisant la chimie des peptides en phase solide et la ligation chimique native, nous avons produit la BigDef1 de l’huitre Crassostrea gigas (Cg-BigDef1) et ses domaines séparés et caractérisé leur structure 3D par RMN. Cg-BigDef1 a montré une activité bactéricide à large spectre y compris contre les isolats cliniques multirésistants de S. aureus. Le domaine ancestral N-terminal confère au domaine de type β-défensine, inactif seul, une activité antimicrobienne qui n’est pas perturbée par un milieu salé. De plus, au contact des bactéries, le domaine hydrophobe entraîne l'assemblage de Cg-BigDef1 sous forme de nanofibres qui enserrent et tuent les bactéries. Nous supposons que le domaine N-terminal hydrophobe des big défensines a été maintenu dans les phyla marins pour renforcer les interactions des défensines avec les membranes bactériennes dans les environnements marins salés où les interactions électrostatiques sont altérées.

Ces propriétés remarquables ouvrent la voie à de futurs développements de candidats-médicaments pour remédier à l’inhibition de l'activité antimicrobienne des β-défensines de vertébrés en concentration saline physiologique (ANR MOSAR-Def 2019-2023).

Un grand merci à D. Destoumieux-Garzón pour sa collaboration, à « Vaincre La Mucovidose » et "CNRS PEPS X-life" pour le financement.

Lire l'article paru dans mBio

Contrôle de la virulence bactérienne par les facteurs de transcription NusG et Rho

Les gènes de virulence des entérobactéries pathogènes sont concentrés dans des îlots génomiques acquis par transfert horizontal au cours de l'évolution. L'expression de ces gènes en dehors de la phase d’infection est préjudiciable à la bactérie et est donc fortement régulée. Un mécanisme de régulation majeur repose sur la protéine « histone-like » H-NS qui se lie aux sites riches en AT caractéristiques de l'ADN acquis horizontalement et qui forme des structures oligomères qui inhibent la transcription sur des régions étendues. Ces régions restent néanmoins exposées à la transcription « envahissante » depuis des régions génomiques voisines ou à des défauts de répression par H-NS. Nous montrons que le facteur d’élongation de la transcription NusG « sécurise » l’inhibition des gènes de virulence en stimulant l'activité du facteur de terminaison de la transcription Rho dans les régions ciblées par H-NS. Remarquablement, NusG modifie la spécificité du facteur Rho qui, seul, cible préférentiellement les régions riches en C. La perturbation de ce mécanisme NusG/Rho-dépendant a de fortes conséquences physiologiques chez Salmonella, probablement parce que des transcriptions non contrôlées dans les régions ciblées par H-NS nourrissent une cascade d’activation conduisant à l’expression incontrôlée des îlots de pathogénicité et des sites génomiques associés.

Lien vers l'article

Tout ce que vous avez toujours voulu savoir sur les interactions protéines/protéines et les tests d’activité kinase est dans un article publié dans JOVE.

Le groupe « Signalisation cellulaire » dirigée par le Dr H. Bénédetti vient de publier dans JOVE, Journal of Visualized Experiments, journal à comité de lecture où les articles sont sous forme de video.

Cet article fait partie de la rubrique des méthodes et fondamentaux en biochimie.

Il détaille les techniques suivantes :

- transfections transitoires de plasmides dans des cellules eucaryotes
- extractions protéiques
- validation d’un anticorps
- étude d’interactions par co-immunoprecipitation
- étude de l’activité kinase d’une protéine par marquage au g32P-[ATP] ou en utilisant des anticorps phosphospécifiques

Ces techniques sont étoffées par les résultats qui ont été obtenus sur la protéine LIMK2-1, que l’équipe vient de mettre à jour et de caractériser. Cette protéine jusque là inconnue, existe bien, et est très atypique dans sa façon de réguler le remaniement du cytosquelette d’actine.

De la matière organique extraterrestre tombée sur Terre il y a 3,3 milliards d’années

Les météorites en apportent régulièrement, mais elle n’a laissé aucune trace ancienne. Elle a été repérée et analysée par des chercheurs du CNRS, de Chimie ParisTech, des universités de Tours et de Lille. Leur publication, dans la revue Geochimica et Cosmochimica Acta, offre un premier modèle pour distinguer ces molécules venues d’ailleurs de celles produites sur Terre.

Références de l'article : D. Gourier et al.
Extraterrestrial organic matter preserved in 3.33 Ga sediments from Barberton, South Africa.
Geochimica et Cosmochimica Acta - Mai 2019 - DOI: 10.1016/j.gca.2019.05.009

Voir l'article

Voir le communiqué du CNRS