Will it be possible to soon detect copper by non invasive imaging?

05 February 2025 par Isabelle Frapart
Towards the detection of copper by MRI using bioinspired probes.

In this work, in collaboration with chemists from the Institut de Chimie de Strasbourg (CNRS/Université de Strasbourg), we have designed and studied a smart MRI probe; which is switched on in the presence of copper. The design of such probes is a real challenge as free Cu(II) in vivo is present in very low quantities, typically lower than Zn(II), another physiological cation. It is therefore of prime importance to conceive probes with a maximal turn on response in the presence of Cu(II), and an excellent selectivity towards Zn(II). The probes are typically composed of an MRI active site, a linker and a Cu(II) binding site. The use of small complexing units for Cu(II) binding makes it very difficult to obtain a good selectivity. Here, we have used a bioinspired approach where the Cu(II) binding site is based on the ATCUN motif, a small peptide that binds Cu(II) in the blood. Thanks to this design, the probe displays an unprecedented turn on response, and importantly an excellent selectivity for Cu(II) vs Zn(II). Phantom MRI images obtained closed to physiological conditions show a bright contrast, illustrating the potential of such probes.

Reference :
A Bioinspired Cu2+-Responsive Magnetic Resonance Imaging Contrast Agent with Unprecedented Turn-On Response and Selectivity
Katharina Zimmeter, Agnès Pallier, Bertrand Vileno, Martina Sanadar, Frédéric Szeremeta, Carlos Platas-Iglesias, Peter Faller, Célia S. Bonnet and Angélique Sour
Inorganic Chemistry - Vol 63 - Issue 49 - 23067−23076