J.-M. Bonmatin coauteur d’une tribune dans “Le Monde” du 6 décembre 2022

J.-M. Bonmatin est un des rédacteurs et premiers signataires d’une tribune issue d’un collectif de deux cents chercheurs en toxicologie et médecins. Cette tribune est publiée dans le journal Le Monde du 06 décembre 2022. La tribune regrette que soient encore repoussées les réformes européennes nécessaires et urgentes pour la protection de la santé, s’agissant des produits chimiques et en particulier des perturbateurs endocriniens et pesticides (règlements REACH et SUR).

 

 

 

 

 

 

Le texte complet de la tribune est accessible ici

Les signataires de la tribune sont listés ici

Lien vers Le Monde ici

 

Une avancée majeure sur la compréhension de la réparation des lésions dans l’ADN

L’équipe « Réparation de l’ADN : structure, fonction et dynamique» vient de dévoiler, dans la prestigieuse revue Nucleic Acid Research, comment les ADN glycosylases d’archées font pour reconnaître et réparer, au niveau moléculaire, certaines lésions dans leur ADN.

Pour en savoir plus :
Structural and functional determinants of the archaeal 8-oxoguanine-DNA glycosylase AGOG for DNA damage recognition and processing
Coste Franck, Goffinont Stéphane, Cros Julien, Gaudon Virginie, Guérin Martine, Garnier Norbert, Confalonieri Fabrice, Flament Didier, Suskiewicz Marcin Josef, Castaing Bertrand https://doi.org/10.1093/nar/gkac932

Identification of a ‘double‘ protein post-translational modification

Proteins are the main ‘molecular machines’ of the cell. To efficiently perform their tasks, they have to be dynamically switched on and off, recruited to specific cellular locations, and degraded in a timely manner. One of the main mechanisms that regulate these processes is temporary covalent attachment, to a protein, of extra regulatory elements known as protein post-translational modifications. The modification reaction is catalysed by specific enzymes and can lead to changes in protein activity, localisation, or half-life. Two of the common protein modifications are ubiquitin and ADP-ribose, each of which can be linked directly to a protein substrate.

In the study published in Science Advances, an international team of researchers, including Vincent Aucagne, Marcin Suskiewicz, and Hervé Meudal from the CBM in Orléans, led by Ivan Ahel and Dragana Ahel groups at the University of Oxford, have demonstrated that these two individual modifications can be joined together, producing a ‘double’ protein modification. The enzymes responsible for this process are DELTEX E3 ligases, which can efficiently attach ubiquitin to protein-linked ADP-ribose. A key contribution of Orléans scientists to the project was the analysis of the ubiquitin-ADP-ribose linkage performed using mass spectrometry (MS) and nuclear magnetic resonance (NMR) equipment of the new MOV2ING platform in Orléans.

The study shows that different protein modifications can be joined together to either combine two regulatory signals or produce a third, distinct signal, with a specific function. This shows previously unappreciated level of complexity in protein regulation.

While the role of ubiquitin-ADP-ribose in cells remains unclear, DELTEX enzymes have previously been linked to both development and antiviral response. The authors showed that the SARS-CoV-2 virus possesses enzymes that can remove the new modification, possibly allowing the virus to inhibit the host immune response.

Références :
Kang Zhu, Marcin J. Suskiewicz, Hloušek-Kasun, Hervé Meudal, Andreja Mikoč, Vincent Aucagne, Dragana Ahel and Ivan Ahel
DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates
Science Advances, 5 Oct 2022, Vol 8, Issue 40 DOI: 10.1126/sciadv.add4253

Une nouvelle approche de criblage versatile pour étudier et exploiter les enzymes à activité helicase

Les hélicases sont des « moteurs moléculaires » ubiquitaires qui remodèlent les structures d’acides nucléiques (AN) et/ou les complexes AN-protéines. Malgré le rôle clé des hélicases dans le métabolisme cellulaire et certaines maladies, leurs répertoires de substrats et les déterminants moléculaires de leur spécialisation fonctionnelle sont souvent inconnus. Le groupe « remodelage de l’ARN » du CBM a développé une nouvelle approche de criblage enzymatique, Helicase-SELEX, pour étudier ces éléments clés de manière globale, à partir de très grandes banques de séquences d’AN naturelles ou synthétiques. En utilisant l'hélicase bactérienne Rho comme prototype, les chercheurs ont ainsi découvert ~3300 séquences de substrats pour Rho chez Escherichia coli, établissant ainsi la première carte détaillée de sites Rut (Rho utilization) à l'échelle du génome. Ils ont également cartographié les sites Rut sensibles à la présence de NusG, un cofacteur de Rho, démontrant ainsi l’intérêt d’Hélicase-SELEX pour évaluer les déterminants de spécificité hélicase de manière globale. Enfin, ils ont utilisé Helicase-SELEX comme approche d’évolution moléculaire dirigée pour générer des séquences Rut synthétiques qui fonctionnent comme des « riboswitches » capables d’induire l’activité de Rho in vitro et in vivo uniquement en présence d'un cofacteur exogène (sérotonine). Ces données démontrent l’utilité d’Helicase-SELEX pour caractériser ou exploiter les hélicases à des fins fondamentales ou biotechnologiques.

L'Institut de Chimie du CNRS a signalé cette nouvelle approche originale de criblage sur son site

Référence

Delaleau M., Eveno E., Simon I., Schwartz A & Boudvillain M.
A scalable framework for the discovery of functional helicase substrates and helicase-driven regulatory switches
PNAS 2022

https://www.pnas.org/doi/10.1073/pnas.2209608119

Comparaison in cellulo et in vivo de 3 lipides auxilliares pour la délivrance d’ARNm sous forme de LNPs

Les LNPs sont les systèmes de délivrance d’ARNm les plus avancés. Ils comprennent un lipide ionizable, un conjugué lipide-PEG et des lipides auxiliaires.

En utilisant un lipide ionizable commercial (D-Lin-MC3) des chercheurs du CBM ont comparé trois lipides auxiliaires (DOPE, DSPC et beta-sitosterol). Le choix du lipide n’a pas eu d’effet sur la transfection de cellules immortalisées mais a dicté leur efficacité sur des cellules dendritiques et in vivo.

Les scientifiques ont montré que les LNPs avec beta-sitosterol et DOPE sont les plus efficaces pour la transfection de cellules dendritiques et l’expression de l’ARNm in vivo.

Références de l'article paru dans Nanomaterials :
Ayoub Medjmedj, Albert Ngalle-Loth, Rudy Clemnçon, Josef Hamacek, Chantal Pichon and Federico Perche
In Cellulo and In Vivo Comparison of Cholesterol, Beta-Sitosterol and Dioleylphosphatidylethanolamine for Lipid Nanoparticle Formulation of mRNA
Nanomaterials 2022, 12(14), 2446; https://doi.org/10.3390/nano12142446

Un biocapteur, basé sur la levure Saccharomyces cerevisiae, capable de détecter la présence du cuivre dans l’environnement

Le cuivre est un micronutriment essentiel à la vie, sa carence peut engendrer des problèmes neurologiques et sanguins. Il est très utilisé dans l’industrie, en particulier dans la fabrication des batteries des voitures électriques, mais aussi en tant qu’engrais ou fongicide. Cependant, il est toxique à des concentrations élevées et constitue un polluant émergent critique. Son suivi dans les eaux constitue donc un enjeu sociétal et environnemental majeur.

Actuellement, les méthodes analytiques de détection du cuivre reposent sur des technologies pointues nécessitant un appareillage coûteux et une expertise expérimentale. De plus, ces méthodes quantifient la quantité totale de cuivre présent dans un échantillon mais pas la quantité de cuivre assimilable par les organismes.

Les chercheurs du groupe thématique "Signalisation cellulaire et neurofibromatose" viennent de développer un nouveau système de détection du cuivre extrêmement sensible et facile à mettre en œuvre. Ce système est un biocapteur basé sur la cellule eucaryote qu’est la levure Saccharomyces cerevisiae. Le biocapteur est ratiométrique : d’une part il exprime de façon constitutive une protéine fluorescente, et d’autre part il exprime une autre protéine fluorescente dont l’intensité est directement corrélée à la concentration en cuivre biodisponible. En effet, cette protéine fluorescente est sous contrôle du promoteur CUP1 sensible au cuivre et bien caractérisé chez Saccharomyces cerevisiae.

Par modification génétique, les chercheurs ont créé différents variants optimisant la sensibilité de ce biocapteur. Ils peuvent détecter le cuivre biodisponible à une concentration limite de 10 nM, dans une gamme linéaire de 10-3 à 10-8 M, surpassant ainsi tous les biocapteurs actuellement connus. Le biocapteur a été validé sur des échantillons « réels », les concentrations détectées sont tout à fait en accord avec celles annoncées par les fabricants.

Référence de l'article :
Bojan Zunar, Christine Mosrin, Hélène Bénédetti, Béatrice Vallée
Re-engineering of CUP1 promoter and Cup2/Ace1 transactivator to convert Saccharomyces cerevisiae into a whole-cell eukaryotic biosensor capable of detecting 10 nM of bioavailable copper
Biosensors and Bioelectronics 214 (2022) 114502

Cet article est signalé par l'Institut de chimie du CNRS sur sont site internet et dans sa lettre " En direct des labos ".

La Serodolin, une nouvelle molécule identifiée pour le traitement de la douleur

Des chercheurs du Centre de biophysique moléculaire, en collaboration avec le laboratoire de Physiologie de la reproduction et des comportements (CNRS/INRAE/Université de Tours/IFCE), l’Institut de chimie organique et analytique (CNRS/Université d’Orléans) et le laboratoire d’Immunologie et neurogénétique expérimentales et moléculaires (CNRS/Université d’Orléans) et deux laboratoires à l’international (le Maj Institute of Pharmacology, Krakow, en Pologne et le Graduate School of pharmaceutical Sciences, Tohoku University, au Japon), ont décortiqué le mécanisme d’action de ligands du récepteur 5-HT7 de la sérotonine.

En savoir plus sur le site de l'Institut de Chimie du CNRS

Référence

Serodolin, a β-arrestin–biased ligand of 5-HT7 receptor, attenuates pain-related behaviors

Chayma El Khamlichi, Flora Reverchon, Nadège Hervouet-Coste, Elodie Robin, Nicolas Chopin, Emmanuel Deau, Fahima Madouri, Cyril Guimpied, Cyril Colas, Arnaud Menuet, Asuka Inoue, Andrzej J. Bojarski, Gérald Guillaumet, Franck Suzenet, Eric Reiter and Séverine Morisset-Lopez, PNAS, 20 mai 2022.

https://doi.org/10.1073/pnas.2118847119