News

Find here all the news from the CBM and beyond

Filtrer par
1 2 10 11 12

CBM researchers have worked out a new generation of metallacryptates

CBM researchers, in collaboration with the team of Professor Vincent L. Pecoraro of the University of Michigan in the United States, have created a new generation of metal cryptates incorporating cations with a very particular architecture. The compounds belonging to this family combine original magnetic properties of slow relaxation with luminescence properties in the visible and in the near-infrared.

MicroRNA-Based Drugs for Brain Tumors

MicroRNAs (miRNAs) are key regulatory elements encoded by the genome. A single miRNA can downregulate the expression of multiple genes involved in diverse functions. Because cancer is a disease with multiple gene aberrations, developing novel approaches to identify and modulate miRNA pathways may result in a breakthrough for cancer treatment. With a special focus on glioblastoma (GBM), this review provides an up-to-date summary of miRNA biogenesis, the role of miRNA in cancer resistance, and essential tools for modulating miRNA expression, as well as of clinically promising RNAi delivery systems and how they can be adapted for therapy.

Article in "Methods in Enzymology" by the team "Hélicases et ARN : mécanismes, ciblage et bio-mimétisme"

Nucleotide analog interference mapping (NAIM) is a combinatorial approach that probes individual atoms and functional groups in an RNA molecule and identifies those that are important for a specific biochemical function. Here, we show how NAIM can be adapted to reveal functionally important atoms and groups on RNA substrates of helicases. We explain how NAIM can be used to investigate translocation and unwinding mechanisms of helicases and discuss the advantages and limitations of this powerful chemogenetic approach.

News june 2009

In the second tender of the Regional Center in 2008, a collaborative project between the CBM and ICOA was selected for regional funding.

Molecular traps for DNA repair enzymes, a way for cancers and aging diseases therapies

The challenge for DNA glycosylases, enzymes involved in the base excision repair pathway, such Fpg and hOgg1, is to identify and remove one lesion among millions of undamaged bases by not only identifying small lesions that didn’t cause large disruptions of local DNA structures, but also by accommodating and processing bulky lesions using the same active site.
1 2 10 11 12