CBM researchers have created the first method for detecting non-covalent complexes of biomolecules by MALDI mass spectrometry based on liquid deposits

The success of this method relies on the use of nonvolatile liquid matrices, which avoids the passage through the solid phase conventionally used in MALDI and the denaturation of the non-covalent assemblies. By their increased viscosity, these matrices also have the advantage of better mimicking the cluttered environments of living organisms.
The reliability of this method has been shown for non-covalent protein protein and ligand protein systems. This new approach could be used for screening of therapeutic protein ligands and facilitating the analysis of membrane protein complexes by mass spectrometry.

The first computational method to predict Rho-dependent termination of transcription.

Rho-dependent termination is a specific bacterial mechanism, which plays a major role in gene expression and maintenance of genomic integrity. This is an important mechanism for the fast adaptation of bacteria to environmental changes or stresses. Although Rho-dependent termination sites are very diverse and without a real consensus sequence, CBM researchers have identified dozens of quantitative sequence descriptors (eg% C and% G) that, taken collectively, provide good prediction of the sites of Rho action in the model genomes of Escherichia coli and Salmonella (85% success rate).

This work was published in the journal Nucleic Acids Research.