The League Against Cancer supports research carried out at the CBM and the INEM

The committees of the Grand Ouest Cancer League bringing together Brittany, Pays de la Loire, Centre-Val de Loire and Poitou-Charentes pool their resources to support cancer researchers.

On Tuesday 7 February at the CBM, La Ligue contre le cancer officially presented a check for €146,000 to support 6 teams of researchers from the CBM and the INEM (Laboratory of Experimental and Molecular Immunology and Neurogenetics). The projects supported aim to quickly achieve concrete results for the benefit of patients.

The committees of Loiret (represented by its volunteer Administrator, Doctor Jean-Louis Vaur) and Eure-et-Loir (represented by its volunteer Vice-President Mr. Jacques Dautreme) were present. The Loir-et-Cher, Cher and Morbihan committees, which are also funders, could not be present but indicated that they were happy to be able to contribute to the financing of regional research.

Mr. Jean-Marc Schneider from La République du Center came to immortalize this moment by going around the table allowing everyone to present their project as well as the benefits and progress to come.

Marcin Suskiewicz, research fellow at the CBM, obtained an ERC Starting 2022 grant

SUMOylation is a natural reaction that changes the structure of proteins in cells. Thanks to his ERC SUMOwriteNread project, Marcin Suskiewicz of the CBM wants to characterize the mechanism by which it occurs, as well as its effects on the properties of proteins. This reaction remains poorly understood even though it probably plays an essential role in our cells.

Find out more on the CNRS Institute of Chemistry website

A major advance in the understanding of DNA damage repair

The "DNA repair: structure, function and dynamics" team has just revealed, in the prestigious journal Nucleic Acid Research, how archaeal DNA glycosylases are able to recognize and repair, at the molecular level, certain lesions in their DNA.

To know more :
Structural and functional determinants of the archaeal 8-oxoguanine-DNA glycosylase AGOG for DNA damage recognition and processing
Coste Franck, Goffinont Stéphane, Cros Julien, Gaudon Virginie, Guérin Martine, Garnier Norbert, Confalonieri Fabrice, Flament Didier, Suskiewicz Marcin Josef, Castaing Bertrand https://doi.org/10.1093/nar/gkac932

Identification of a ‘double‘ protein post-translational modification

Proteins are the main ‘molecular machines’ of the cell. To efficiently perform their tasks, they have to be dynamically switched on and off, recruited to specific cellular locations, and degraded in a timely manner. One of the main mechanisms that regulate these processes is temporary covalent attachment, to a protein, of extra regulatory elements known as protein post-translational modifications. The modification reaction is catalysed by specific enzymes and can lead to changes in protein activity, localisation, or half-life. Two of the common protein modifications are ubiquitin and ADP-ribose, each of which can be linked directly to a protein substrate.

In the study published in Science Advances, an international team of researchers, including Vincent Aucagne, Marcin Suskiewicz, and Hervé Meudal from the CBM in Orléans, led by Ivan Ahel and Dragana Ahel groups at the University of Oxford, have demonstrated that these two individual modifications can be joined together, producing a ‘double’ protein modification. The enzymes responsible for this process are DELTEX E3 ligases, which can efficiently attach ubiquitin to protein-linked ADP-ribose. A key contribution of Orléans scientists to the project was the analysis of the ubiquitin-ADP-ribose linkage performed using mass spectrometry (MS) and nuclear magnetic resonance (NMR) equipment of the new MOV2ING platform in Orléans.

The study shows that different protein modifications can be joined together to either combine two regulatory signals or produce a third, distinct signal, with a specific function. This shows previously unappreciated level of complexity in protein regulation.

While the role of ubiquitin-ADP-ribose in cells remains unclear, DELTEX enzymes have previously been linked to both development and antiviral response. The authors showed that the SARS-CoV-2 virus possesses enzymes that can remove the new modification, possibly allowing the virus to inhibit the host immune response.

References :
Kang Zhu, Marcin J. Suskiewicz, Hloušek-Kasun, Hervé Meudal, Andreja Mikoč, Vincent Aucagne, Dragana Ahel and Ivan Ahel
DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates
Science Advances, 5 Oct 2022, Vol 8, Issue 40 DOI: 10.1126/sciadv.add4253

7th Biotechnocentre theme day – June 17, 2022

Researchers in biosciences and life chemistry met "face-to-face" for the Biotechnocentre's thematic day on "Exposome and Epigenetics: how does the environment play with our genes?" ". Renowned speakers declined the different facets of the exposome: physical or chemical exposure or exposure to different pathogens, stress, diet, social inequalities... They also highlighted the impact of the exposome on the environment and on our health, which can have different consequences depending on gender, age, genetic heritage and on its regulation by reversible epigenetic modifications.

Biotechnocentre 33rd conference

The 33rd Biotechnocentre conference will be held on October 7 and 8, 2021  at Center Parcs Domaine Les Hauts de Bruyères - Rue Lamotte - 41 600 Chaumont-sur-Tharonne.

With the participation of Doctoral School 549 "Santé, Sciences Biologiques et Chimie du Vivant" (SSBCV).

Among the speakers announced, Vincent Aucagne, head of the thematic group "Synthetic proteins and bioorthogonal chemistry" " will give a conference entitled "Methodological developments for the chemical synthesis of proteins"

Registration before September 3, 2021 at biotechnocentre@sfr.fr

See the poster

Conferences program