The CNRS Institute of Chemistry reports on its website the work of CBM researchers

Understanding the function of proteins requires knowing their structures.
To do this, scientists used artificial intelligence to predict the shape of a class of "PARP" type proteins that regulate DNA repair, gene transcription, and antiviral response, but are also potential targets for new cancer therapies. This approach, published in the journal Nucleic Acids Research, could be extended to many other families of proteins.

Voir l'actualité sur le site de l'Institut de Chimie du CNRS

Référence

Updated protein domain annotation of the PARP protein family sheds new light on biological function
Marcin J. Suskiewicz, Deeksha Munnur, Øyvind Strømland, Ji-Chun Yang, Laura E. Easton, Chatrin Chatri , Kang Zhu, Domagoj Baretić, Stéphane Goffinont, Marion Schuller, Wing-Fung Wu, Jonathan M Elkins, Dragana Ahel, Sumana Sanyal, David Neuhaus & Ivan Ahel
Journal Nucleic Acids Research

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkad514/7199335?login=true

Structural insights into the SUMOylation reaction

SUMOylation and ubiquitylation are related protein modifications where small proteins (SUMO or ubiquitin) become covalently attached to protein substrates to regulate their function. Both these protein modifications are essential for viability and are strongly implicated in human disease, but SUMOylation remains less studied than ubiquitylation. A key step in both SUMOylation and ubiquitylation reactions is the formation of a reactive thioester molecule in which SUMO or ubiquitin becomes linked to a cysteine residue on proteins called E2. It is from there that SUMO/ubiquitin is transferred onto the final protein substrate. In the study just published in Journal of Biological Chemistry, the researchers from the CBM used site-directed mutagenesis to create a version of the human E2-SUMO thioester that – unlike the native reactive thioester – is chemically stable and can be studied with structural biology methods. The crystal structure of this molecule revealed potential regulatory mechanisms for the SUMOylation process. The mutagenesis approach was inspired by a method developed for the yeast SUMOylation pathway by the group of Chris Lima.

The article, authored by the CBM engineer Stéphane Goffinont and other members of the team “Protein Post-Translational Modifications and DNA Repair: Structure, Function, and Dynamics”, is the first publication from the project “SUMOwriteNread”. The project is led by the CBM researcher Marcin J. Suskiewicz and funded by the Horizon Europe programme of the European Union (European Research Council Starting Grant no 101078837).

Stéphane Goffinont, Franck Coste, Pierre Prieu-Serandon, Lucija Mance, Virginie Gaudon, Norbert Garnier, Bertrand Castaing and Marcin Józef Suskiewicz
Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic.
Journal of Biological Chemistry, Volume 299, Issue 7, 2023, 104870 - https://www.sciencedirect.com/science/article/pii/S0021925823018987

Combining computers and experiments to study the domain composition and function of the PARP protein family

Prediction of protein structure with the artificial intelligence (AI)-powered program AlphaFold2 – hailed by the Science magazine, the biggest scientific breakthrough in 2021 – has rapidly revolutionised protein science. Trained on a large dataset of experimentally determined protein structures, AlphaFold2 can generate a model of a protein’s three-dimensional (tertiary) structure given its amino-acid sequence (primary structure). AlphaFold2 models are highly reliable, thus offering a good basis for understanding the function of proteins whose experimental structure is not available or is not complete.

In the present article, published in the journal Nucleic Acids Research, a collaborative team composed of researchers from Orléans, Oxford, and Cambridge, carefully examined AlphaFold2 models of an important group of proteins called the PARP protein family, which includes 17 proteins in human. These proteins regulate DNA repair and many other cellular pathways by catalysing a protein post-translational modification called protein (ADP-ribosyl)ation. The analysis of AlphaFold2 models allowed annotating all protein domains in this family, several of which have not been annotated before. This analysis served as a starting point for various accompanying experiments which validated some of the insights gained from the predicted models. Featuring an accessible introduction into the new computational approaches, the study can serve as a blueprint for scientists studying other protein families.

Two of the CBM members involved in the study are Marcin J. Suskiewicz and Stéphane Goffinont, both from the group “Protein Post-Translational Modifications: Structure, Function, and Dynamics”. This work is linked to a grant from Ligue contre le Cancer CSIRGO 2023.

References :
Marcin J Suskiewicz and others, Updated protein domain annotation of the PARP protein family sheds new light on biological function, Nucleic Acids Research, 2023;, gkad514,
https://doi.org/10.1093/nar/gkad514