Research on glioma (brain tumor) carried out at the CBM highlighted by CNRS Chimie

The use of different original NMR methods (MRI, 1H HR-MAS, 2D liquid NMR) made it possible to characterize a glioma model established in adult Drosophila and to reveal the therapeutic potential of a serotonin receptor for the treatment of these cancers.

Read the CNRS Chimie article.

Read the "Actualité chimique" article n° 492, 2024, February

Gliomas account for 50% of brain cancers and therefore constitute the most common brain tumors. Molecular alterations involved in adult gliomas have been identified and mainly affect tyrosine kinase receptors with amplification and/or mutation of the epidermal growth factor receptor (EGFR) and its associated signaling pathways. Several targeted therapies have been developed but current treatments remain ineffective for glioblastomas, the most severe forms. Thus, it is a priority to identify new pharmacological targets. Here, we used a Drosophila glioma model in adult, to characterize metabolic disturbances associated with glioma and assess the consequences of the serotonin 5-HT7 receptor expression on glioma development. First, by using in vivo Magnetic Resonance Imaging, we have shown that expression of the constitutively active forms of EGFR and PI3K in adult glial cells induced enlargement of brains. Then, we explored altered cellular metabolism by using High-Resolution Magic Angle Spinning NMR and 1H-13C Heteronuclear Single Quantum Coherence solution state. Discriminant metabolites identified highlight rewiring of metabolic pathways in glioma, and associated cachexia phenotypes. Finally, the expression of 5-HT7R in this model attenuates phenotypes associated with glioma development (brain enlargement and cachexia).

Article :
An adult Drosophila glioma model to highlight metabolic dysfunctions and evaluate the role of the serotonin 5-HT7 receptor as a potential therapeutic target.
Bertrand M, Szeremeta F, Hervouet‐Coste N, Sarou-Kanian V, Landon C, Morisset-Lopez S, Decoville M
The FASEB Journal. 2023 37:e23230. doi:10.1096/fj.202300783RR

CBM PhD students have talent!

Ons Kharrat, from the "NMR of Biomolecules" group, received one of the 3 prizes for the best oral communication at the GDR MuFoPAM days which took place from October 19 to 21, 2022.
This prize was awarded to him by the company Genepep (https://www.genepep.com/accueil/).

Elodie Villalonga, from the "Cell signaling and neurofibromatosis" group, won one of the 2 prizes for the best oral communication
and
Valentin Beauvais, from the group “Dysregulation of autophagy during inflammation due to HIV”, received one of the poster prizes at the 34th Biotechnocentre conference which took place on October 20 and 21, 2022.

Metabolomic Nuclear Magnetic Resonance Studies at Presymptomatic and Symptomatic Stages of Huntington’s Disease on a Drosophila Model

Huntington’s disease (HD) is an inherited neurodegenerative disorder, for which diagnostic development and discovery of new therapeutic targets are urgently required. In this study, a model of HD in Drosophila melanogaster has been used to identify metabolic biomarkers at presymptomatic and symptomatic stages of the disease. The pan-neuronal expression of a pathogenic fragment of the human Huntingtin (HTT) protein containing a 93-repeat polyglutamine expansion (Httex1p Q93) in transgenic flies induces a neuropathology with several characteristics of the human disease. The discriminant metabolites between the diseased flies and their controls were identified by 1H-NMR and OPLS-DA multivariate analysis.
The experiments carried out with 10-day-old flies allowed us to identify a set of 10 biomarkers of the presymptomatic stage: NAD+, AMP, fumarate, asparagine, dimethylamine, β-alanine, glutamine, succinate, glutamate, and ethanol. Remarkably, the experiments conducted with 16-day-old flies, when the symptoms of the disease were present, highlighted a different set of 6 biomarkers: phosphocholine, ethanolamine, 2-oxoglutarate, succinate, pyruvate, and acetate. Results provide a better understanding of the metabolic impairments in a widely used HD model and demonstrate that metabolism perturbations change dramatically during the development of the disease.

Metabolomic Nuclear Magnetic Resonance Studies at Presymptomatic and Symptomatic Stages of Huntington’s Disease on a Drosophila Model
Marylène Bertrand, Martine Decoville, Hervé Meudal, Serge Birman, and Céline Landon
Journal of Proteome Research (2020) 19, (10) 4034-4045 - doi : 10.1021/10.1021/acs.jproteome.0c00335