A review on ADP-ribosylation appeared in the journal Cell

ADP-ribosylation is a biochemical reaction in which the ADP-ribose group from NAD+ becomes covalently attached to various substrates. As such, ADP-ribosylation represents a ubiquitous modification of proteins and other biomolecules (e.g., nucleic acids). Catalysed by a range of specific enzymes, the most important of which in humans is PARP1, ADP-ribosylation serves as a regulatory mechanism influencing a wide array of cellular processes in all domains of life. This new review, published in the authoritative Leading Edge series of reviews of the journal Cell, covers the state of the art on this subject spanning structural biology, biochemistry, cell biology, and the clinical facets of ADP-ribosylation. In addition to Marcin Suskiewicz from the CBM as the first author, the review was co-authored by Ivan Ahel and members of his group at the University of Oxford.

Suskiewicz M., Prokhlrova E., Rack J.G.M., Ahel I.
ADP-ribosylation from molecular mechanisms to therapeutic implications
Cell Review, Volume 186, Issue 21, pages 4475-4495, October 12, 2023 - doi: 10.1016/j.cell.2023.08.03

ARTE-Thema investigative report on neonicotinoids and insects, with interviews of J.-M. Bonmatin

On 5 July 2022, ARTE broadcast an investigative report as part of its THEMA evenings entitled: Insecticide - How agrochemicals killed insects.

This report was filmed at the Centre for Molecular Biophysics of the CNRS with several interviews with Jean-Marc Bonmatin, as well as with other members of the Task Force on Systemic Pesticides (http://www.tfsp.info/en/) interviewed in several countries.

The report is based on the book published in 2019 by journalist Stéphane Foucart of Le Monde which was entitled "Et le monde devint silencieux". The ARTE report is available in six languages.

The CNRS Institute of Chemistry reports on its website the work of CBM researchers

Understanding the function of proteins requires knowing their structures.
To do this, scientists used artificial intelligence to predict the shape of a class of "PARP" type proteins that regulate DNA repair, gene transcription, and antiviral response, but are also potential targets for new cancer therapies. This approach, published in the journal Nucleic Acids Research, could be extended to many other families of proteins.

Voir l'actualité sur le site de l'Institut de Chimie du CNRS

Référence

Updated protein domain annotation of the PARP protein family sheds new light on biological function
Marcin J. Suskiewicz, Deeksha Munnur, Øyvind Strømland, Ji-Chun Yang, Laura E. Easton, Chatrin Chatri , Kang Zhu, Domagoj Baretić, Stéphane Goffinont, Marion Schuller, Wing-Fung Wu, Jonathan M Elkins, Dragana Ahel, Sumana Sanyal, David Neuhaus & Ivan Ahel
Journal Nucleic Acids Research

https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkad514/7199335?login=true