Despite significant progress in cancer imaging and treatment over the years; early diagnosis, metastasis detection, and a better understanding of cancer progression remain an unmet clinical need. Molecular imaging can fulfil this need, but requires the design of contrast agents which target specific tumor biomarkers. Netrin-1 is an extracellular protein overexpressed in metastatic breast, and it is implicated in tumor progression, angiogenesis and appearance of metastasis and tumor aggressivity.
Reserachers of the team "Metal complexes and MRI", develop and validated in vivo the first Netrin-1 specific peptide-based multimodal probe. A structural validation was performed by molecular docking, thanks to a collaboration CBM and Institute of Organic and Analytical Chemistry.
This probe enabled successful triple-negative metastatic breast tumor visualization namely at early development stage (tumor volume 0-50 mm3), by magnetic resonance imaging (MRI). Such peptide-based probes are molecular platforms allowing imaging by MRI or single photon emission tomography. This bimodal approach makes it possible to scan a wide range of target concentrations (nM to μM), enabling in vivo mapping of Netrin-1 in cancer murine models, at different tumor evolution stages.
References:
Clémentine Moreau, Tea Lukačević, Agnès Pallier, Julien Sobilo, Samia Aci-Sèche, Norbert Garnier, Sandra Même, Éva Tóth and Sara LacerdaPeptide-Conjugated MRI Probe Targeted to Netrin-1, a Novel Metastatic Breast Cancer Biomarker
Bioconjugate Chem. https://doi.org/10.1021/acs.bioconjchem.3c00558